Skip to content ↓

Engineers create an inhalable form of messenger RNA

Patients with lung disease could find relief by breathing in messenger RNA molecules.
Press Inquiries

Press Contact:

Sarah McDonnell
Phone: 617-253-8923
Fax: 617-258-8762
MIT News Office

Media Download

MIT researchers have designed inhalable particles that can deliver messenger RNA. These lung epithelial cells have taken up particles (yellow) that carry mRNA encoding green fluorescent protein.
Download Image
Caption: MIT researchers have designed inhalable particles that can deliver messenger RNA. These lung epithelial cells have taken up particles (yellow) that carry mRNA encoding green fluorescent protein.
Credits: Image: Asha Patel

*Terms of Use:

Images for download on the MIT News office website are made available to non-commercial entities, press and the general public under a Creative Commons Attribution Non-Commercial No Derivatives license. You may not alter the images provided, other than to crop them to size. A credit line must be used when reproducing images; if one is not provided below, credit the images to "MIT."

Close
MIT researchers have designed inhalable particles that can deliver messenger RNA. These lung epithelial cells have taken up particles (yellow) that carry mRNA encoding green fluorescent protein.
Caption:
MIT researchers have designed inhalable particles that can deliver messenger RNA. These lung epithelial cells have taken up particles (yellow) that carry mRNA encoding green fluorescent protein.
Credits:
Image: Asha Patel

Messenger RNA, which can induce cells to produce therapeutic proteins, holds great promise for treating a variety of diseases. The biggest obstacle to this approach so far has been finding safe and efficient ways to deliver mRNA molecules to the target cells.

In an advance that could lead to new treatments for lung disease, MIT researchers have now designed an inhalable form of mRNA. This aerosol could be administered directly to the lungs to help treat diseases such as cystic fibrosis, the researchers say.

“We think the ability to deliver mRNA via inhalation could allow us to treat a range of different diseases of the lung,” says Daniel Anderson, an associate professor in MIT’s Department of Chemical Engineering, a member of MIT’s Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science (IMES), and the senior author of the study.

The researchers showed that they could induce lung cells in mice to produce a target protein — in this case, a bioluminescent protein. If the same success rate can be achieved with therapeutic proteins, that could be high enough to treat many lung diseases, the researchers say.

Asha Patel, a former MIT postdoc who is now an assistant professor at Imperial College London, is the lead author of the paper, which appears in the Jan. 4 issue of the journal Advanced Materials. Other authors of the paper include James Kaczmarek and Kevin Kauffman, both recent MIT PhD recipients; Suman Bose, a research scientist at the Koch Institute; Faryal Mir, a former MIT technical assistant; Michael Heartlein, the chief technical officer at Translate Bio; Frank DeRosa, senior vice president of research and development at Translate Bio; and Robert Langer, the David H. Koch Institute Professor at MIT and a member of the Koch Institute.

Treatment by inhalation

Messenger RNA encodes genetic instructions that stimulate cells to produce specific proteins. Many researchers have been working on developing mRNA to treat genetic disorders or cancer, by essentially turning the patients’ own cells into drug factories.

Because mRNA can be easily broken down in the body, it needs to transported within some kind of protective carrier. Anderson’s lab has previously designed materials that can deliver mRNA and another type of RNA therapy called RNA interference (RNAi) to the liver and other organs, and some of these are being further developed for possible testing in patients.

In this study, the researchers wanted to create an inhalable form of mRNA, which would allow the molecules to be delivered directly to the lungs. Many existing drugs for asthma and other lung diseases are specially formulated so they can be inhaled via either an inhaler, which sprays powdered particles of medication, or a nebulizer, which releases an aerosol containing the medication.

The MIT team set out to develop a material that could stabilize RNA during the process of aerosol delivery. Some previous studies have explored a material called polyethylenimine (PEI) for delivering inhalable DNA to the lungs. However, PEI doesn’t break down easily, so with the repeated dosing that would likely be required for mRNA therapies, the polymer could accumulate and cause side effects.

To avoid those potential side effects, the researchers turned to a type of positively charged polymers called hyperbranched poly (beta amino esters), which, unlike PEI, are biodegradable.

The particles the team created consist of spheres, approximately 150 nanometers in diameter, with a tangled mixture of the polymer and mRNA molecules that encode luciferase, a bioluminescent protein. The researchers suspended these particles in droplets and delivered them to mice as an inhalable mist, using a nebulizer.

“Breathing is used as a simple but effective delivery route to the lungs. Once the aerosol droplets are inhaled, the nanoparticles contained within each droplet enter the cells and instruct it to make a particular protein from mRNA,” Patel says.

The researchers found that 24 hours after the mice inhaled the mRNA, lung cells were producing the bioluminescent protein. The amount of protein gradually fell over time as the mRNA was cleared. The researchers were able to maintain steady levels of the protein by giving the mice repeated doses, which may be necessary if adapted to treat chronic lung disease.

Broad distribution

Further analysis of the lungs revealed that mRNA was evenly distributed throughout the five lobes of the lungs and was taken up mainly by epithelial lung cells, which line the lung surfaces. These cells are implicated in cystic fibrosis, as well as other lung diseases such as respiratory distress syndrome, which is caused by a deficiency in surfactant protein. In her new lab at Imperial College London, Patel plans to further investigate mRNA-based therapeutics.

In this study, the researchers also demonstrated that the nanoparticles could be freeze-dried into a powder, suggesting that it may be possible to deliver them via an inhaler instead of nebulizer, which could make the medication more convenient for patients.

TranslateBio, a company developing mRNA therapeutics, partially funded this study and has also begun testing an inhalable form of mRNA in a Phase 1/2 clinical trial in patients with cystic fibrosis. Other sources of funding for this study include the United Kingdom Engineering and Physical Sciences Research Council and the Koch Institute Support (core) Grant from the National Cancer Institute.

Press Mentions

Scientific American

MIT researchers have developed an inhalable form of messenger RNA that could be used to help treat patients with lung disease, reports Christopher Intagliata for Scientific American. Intagliata explains that researchers hope to one day “use this technique to help cystic fibrosis patients.”

Related Links

Related Topics

Related Articles

More MIT News

Heather Hendershot portrait photo on grey background. The book cover has large capitalized text that says, “Heather Hendershot, When the News Broke: Chicago 1968 and the Polarizing of America.” The cover includes 1968 photo of protestors outside CBS News.

Why 1968 still matters

Professor Heather Hendershot’s new book about that year’s Democratic National Convention explores how anger at the media became part of our culture wars.

Read full story