Skip to content ↓

Festival of Learning 2023 underscores importance of well-designed learning environments

Keynote speaker Bror Saxberg SM ’85, PhD ’89 encourages understanding learners and their contexts.
Watch Video
Press Inquiries

Press Contact:

Janine Liberty
Phone: 617-324-4369
MIT Open Learning
Photo of Bror Saxberg speaking in front of a blackboard and gesturing with his hands.
MIT Festival of Learning 2023 keynote speaker Bror Saxberg SM ’85, PhD ’89 is a two-time alumnus of MIT's Department of Electrical Engineering and Computer Science, founder of LearningForge LLC, and former chief learning officer at Kaplan, Inc.
Photo: Chris McIntosh
Photo taken from the back of a college lecture hall showing several dozen adults listen to a speaker who is standing between a podium and a screen displaying a slideshow.
MIT instructors, students, and staff gathered on campus for the first in-person Festival of Learning since 2020 to learn about the practical application of learning sciences to real-world learning environments.
Photo: Chris McIntosh
Photo of several dozen adults seated in a college lecture hall, engaged in conversations with each other. Audience members look to be excited, smiling, and listening intently.
MIT community members engage in conversation with each other after Bror Saxberg’s keynote at the Festival of Learning 2023.
Photo: Chris McIntosh

During its first in-person gathering since 2020, MIT’s Festival of Learning 2023 explored how the learning sciences can inform the Institute on how to best support students. Co-sponsored by MIT Open Learning and the Office of the Vice Chancellor (OVC), this annual event celebrates teaching and learning innovations with MIT instructors, students, and staff.

Bror Saxberg SM ’85, PhD ’89, founder of LearningForge LLC and former chief learning officer at Kaplan, Inc., was invited as keynote speaker, with opening remarks by MIT Chancellor Melissa Nobles and Vice President for Open Learning Eric Grimson, and discussion moderated by Senior Associate Dean of Open Learning Christopher Capozzola. This year’s festival focused on how creating well-designed learning environments using learning engineering can increase learning success.

Video thumbnail Play video
2023 Festival of Learning: Highlights

Well-designed learning environments are key

In his keynote speech “Learning Engineering: What We Know, What We Can Do,” Saxberg defined “learning engineering” as the practical application of learning sciences to real-world problems at scale. He said, “High levels can be reached by all learners, given access to well-designed instruction and motivation for enough practice opportunities.”

Informed by decades of empirical evidence from the field of learning science, Saxberg’s own research, and insights from Kaplan, Inc., Saxberg finds that a hands-on strategy he calls “prepare, practice, perform” delivers better learning outcomes than a traditional “read, write, discuss” approach. Saxberg recommends educators devote at least 60 percent of learning time to hands-on approaches, such as producing, creating, and engaging. Only 20-30 percent of learning time should be spent in the more passive “knowledge acquisition” modes of listening and reading.

“Here at MIT, a place that relies on data to make informed decisions, learning engineering can provide a framework for us to center in on the learner to identify the challenges associated with learning, and to apply the learning sciences in data-driven ways to improve instructional approaches,” said Nobles. During their opening remarks, Nobles and Grimson both emphasized how learning engineering at MIT is informed by the Institute’s commitment to educating the whole student, which encompasses student well-being and belonging in addition to academic rigor. “What lessons can we take away to change the way we think about education moving forward? This is a chance to iterate,” said Grimson.

Well-designed learning environments are informed by understanding motivation, considering the connection between long-term and working memory, identifying the range of learners’ prior experience, grounding practice in authentic contexts (i.e., work environments), and using data-driven instructional approaches to iterate and improve.

Video thumbnail Play video
2023 Festival of Learning: Keynote by Bror Saxberg

Understand learner motivation

Saxberg asserted that before developing course structures and teaching approaches known to encourage learning, educators must first examine learner motivation. Motivation doesn’t require enjoyment of the subject or task to spur engagement. Similar to how a well-designed physical training program can change your muscle cells, if a learner starts, persists, and exerts mental effort in a well-designed learning environment, they can change their neurons — they learn. Saxberg described four main barriers to learner motivation, and solutions for each:

  • The learner doesn’t see the value of the lesson. Ways to address this include helping the learners find value; leveraging the learner’s expertise in another area to better understand the topic at hand; and making the activity itself enjoyable. “Finding value” could be as simple as explaining the practical applications of this knowledge in their future work in the field, or how this lesson prepares learners for their advanced level courses. 
  • Self-efficacy for learners who don’t think they’re capable. Educators can point to parallel experiences with similar goals that students may have already achieved in another context. Alternatively, educators can share stories of professionals who have successfully transitioned from one area of expertise to another. 
  • “Something” in the learner’s way, such as not having the time, space, or correct materials. This is an opportunity to demonstrate how a learner can use problem-solving skills to find a solution to their perceived problem. As with the barrier of self-efficacy, educators can assure learners that they are in control of the situation by sharing similar stories of those who’ve encountered the same problem and the solution they devised.
  • The learner’s emotional state. This is no small barrier to motivation. If a learner is angry, depressed, scared, or grieving, it will be challenging for them to switch their mindset into learning mode. A wide array of emotions require a wide array of possible solutions, from structured conversation techniques to recommending professional help.

Consider the cognitive load

Saxberg has found that learning occurs when we use working memory to problem-solve, but our working memory can only process three to five verbal or conscious thoughts at a time. Long-term memory stores knowledge that can be accessed non-verbally and non-consciously, which is why experts appear to remember information effortlessly. Until a learner develops that expertise, extraneous information in a lesson will occupy space in their working memory, running the risk of distracting the learner from the desired learning outcome.

To accommodate learners’ finite cognitive load, Saxberg suggested the solution of reevaluating which material is essential, then simplifying the exercise or removing unnecessary material accordingly. “That notion of, ‘what do we really need students to be able to do?’ helps you focus,” said Saxberg.

Another solution is to leverage the knowledge, skills, and interests learners already bring to the course — these long-term memories can scaffold the new material. “What do you have in your head already, what do you love, what’s easy to draw from long-term memory? That would be the starting point for challenging new skills. It’s not the ending point because you want to use your new skills to then find out new things,” Saxberg said. Finally, consider how your course engages with the syllabi. Do you explain the reasoning behind the course structure? Do you show how the exercises or material will be applied to future courses or the field? Do you share best practices for engaging working memory and learning? By acknowledging and empathizing with the practical challenges that learners face, you can remove a barrier from their cognitive load.

Ground practice in authentic contexts

Saxberg stated that few experts read textbooks to learn new information — they discover what they need to know while working in the field, using those relevant facts in context. As such, students will have an easier time remembering facts if they’re practicing in relevant or similar environments to their future work.

If students can practice classifying problems in real work contexts rather than theoretical practice problems, they can build a framework to classify what’s important. That helps students recognize the type of problem they’re trying to solve before trying to solve the problem itself. With enough hands-on practice and examples of how experts use processes and identify which principles are relevant, learners can holistically learn entire procedures. And that learning continues once learners graduate to the workforce: professionals often meet to exchange knowledge at conferences, charrettes, and other gatherings.

Enhancing teaching at MIT

The Festival of Learning furthers the Office of the Chancellor’s mission to advance academic innovation that will foster the growth of MIT students. The festival also aligns with the MIT Open Learning’s Residential Education team’s goal of making MIT education more effective and efficient. Throughout the year, their team offers continuous support to MIT faculty and instructors using digital technologies to augment and transform how they teach.

“We are doubling down on our commitment to continuous growth in how we teach,” said Nobles.

Related Links

Related Topics

Related Articles

More MIT News