Skip to content ↓

Q&A: Three Tata Fellows on the program’s impact on themselves and the world

MIT graduate students in technology and policy aim to make an impact in resource-constrained communities through energy research and real-world application.
Press Inquiries

Press Contact:

Kelley Travers
Phone: 617-715-5279
MIT Energy Initiative
Close
Headshots of Serena Patel, Rameen Hayat Malik, and Ethan Harrison.
Caption:
Left to right: Serena Patel, Rameen Hayat Malik, and Ethan Harrison.
Credits:
Photos: Kelley Travers

The Tata Fellowship at MIT gives graduate students the opportunity to pursue interdisciplinary research and work with real-world applications in developing countries. Part of the MIT Tata Center for Technology and Design, this fellowship contributes to the center’s goal of designing appropriate, practical solutions for resource-constrained communities. Three Tata Fellows — Serena Patel, Rameen Hayat Malik, and Ethan Harrison — discuss the impact of this program on their research, perspectives, and time at MIT.

Serena Patel

Serena Patel graduated from the University of California at Berkeley with a degree in energy engineering and a minor in energy and resources. She is currently pursuing her SM in technology and policy at MIT and is a Tata Fellow focusing on decarbonization in India using techno-economic modeling. Her interest in the intersection of technology, policy, economics, and social justice led her to attend COP27, where she experienced decision-maker and activist interactions firsthand.

Q: How did you become interested in the Tata Fellowship, and how has it influenced your time at MIT?

A: The Tata Center appealed to my interest in searching for creative, sustainable energy technologies that center collaboration with local-leading organizations. It has also shaped my understanding of the role of technology in sustainable development planning. Our current energy system disproportionately impacts marginalized communities, and new energy systems have the potential to perpetuate and/or create inequities. I am broadly interested in how we can put people at the core of our technological solutions and support equitable energy transitions. I specifically work on techno-economic modeling to analyze the potential for an early retirement of India’s large coal fleet and conversion to long-duration thermal energy storage. This could mitigate job losses from rapid transitions, support India’s energy system decarbonization plan, and provide a cost-effective way to retire stranded assets.

Q: Why is interdisciplinary study important to real-world solutions for global communities, and how has working at the intersection of technology and policy influenced your research?

A: Technology and policy work together in mediating and regulating the world around us. Technological solutions can be disruptive in all the good ways, but they can also do a lot of harm and perpetuate existing inequities. Interdisciplinary studies are important to mitigate these interrelated issues so innovative ideas in the ivory towers of Western academia do not negatively impact marginalized communities. For real-world solutions to positively impact individuals, marginalized communities need to be centered within the research design process. I think the research community’s perspective on real-world, global solutions is shifting to achieve these goals, but much work remains for resources to reach the right communities.

The energy space is especially fascinating because it impacts everyone’s quality of life in overt or nuanced ways. I’ve had the privilege of taking classes that sit at the intersection of energy technology and policy, involving land-use law, geographic representation, energy regulation, and technology policy. In general, working at the intersection of technology and policy has shaped my perspective on how regulation influences widespread technology adoption and the overall research directions and assumptions in our energy models.

Q: How has your experience at COP27 influenced your approach to your research?

A: Attending COP27 at Sharm El-Sheikh, Egypt, last November influenced my understanding of the role of science, research, and activism in climate negotiations and action. Science and research are often promoted as necessary for sharing knowledge at the higher levels, but they were also used as a delay tactic by negotiators. I heard how institutional bodies meant to support fair science and research often did not reach intended stakeholders. Lofty goals or financial commitments to ensure global climate stability and resilience still lacked implementation and coordination with deep technology transfer and support. On the face of it, these agreements have impact and influence, but I heard many frustrations over the lack of tangible, local support. This has driven my research to be as context-specific as possible, to provide actionable insights and leverage different disciplines.

I also observed the role of activism in the negotiations. Decision-makers are accountable to their country, and activists are spreading awareness and bringing transparency to the COP process. As a U.S. citizen, I suddenly became more aware of how political engagement and awareness in the country could push the boundaries of international climate agreements if the government were more aligned on climate action.

Rameen Hayat Malik

Rameen Hayat Malik graduated from the University of Sydney with a bachelor’s degree in chemical and biomolecular engineering and a Bachelor of Laws. She is currently pursuing her SM in technology and policy and is a Tata Fellow researching the impacts of electric vehicle (EV) battery production in Indonesia. Originally from Australia, she first became interested in the geopolitical landscape of resources trade and its implications for the clean energy transition while working in her native country’s Department of Climate Change, Energy, the Environment and Water.

Q: How did you become interested in the Tata Fellowship, and how has it influenced your time at MIT?

A: I came across the Tata Fellowship while looking for research opportunities that aligned with my interest in understanding how a just energy transition will occur in a global context, with a particular focus on emerging economies. My research explores the techno-economic, social, and environmental impacts of nickel mining in Indonesia as it seeks to establish itself as a major producer of EV batteries. The fellowship’s focus on community-driven research has given me the freedom to guide the scope of my research. It has allowed me to integrate a community voice into my work that seeks to understand the impact of this mining on forest-dependent communities, Indigenous communities, and workforce development.

Q: Battery technology and production are highly discussed in the energy sector. How does your research on Indonesia’s battery production contribute to the current discussion around batteries, and what drew you to this topic?

A: Indonesia is one of the world’s largest exporters of coal, while also having one of the largest nickel reserves in the world — a key mineral for EV battery production. This presents an exciting opportunity for Indonesia to be a leader in the energy transition, as it both seeks to phase out coal production and establish itself as a key supplier of critical minerals. It is also an opportunity to actually apply principles of a just transition to the region, which seeks to repurpose and re-skill existing coal workforces, to bring Indigenous communities into the conversation around the future of their lands, and to explore whether it is actually possible to sustainably and ethically produce nickel for EV battery production.

I’ve always seen battery technologies and EVs as products that, at least today, are accessible to a small, privileged customer base that can afford such technologies. I’m interested in understanding how we can make such products more widely affordable and provide our lowest-income communities with the opportunities to actively participate in the transition — especially since access to transportation is a key driver of social mobility. With nickel prices impacting EV prices in such a dramatic way, unlocking more nickel supply chains presents an opportunity to make EV batteries more accessible and affordable.

Q: What advice would you give to new students who want to be a part of real-world solutions to the climate crisis?

A: Bring your whole self with you when engaging these issues. Quite often we get caught up with the technology or modeling aspect of addressing the climate crisis and forget to bring people and their experiences into our work. Think about your positionality: Who is your community, what are the avenues you have to bring that community along, and what privileges do you hold to empower and amplify voices that need to be heard? Find a piece of this complex puzzle that excites you, and find opportunities to talk and listen to people who are directly impacted by the solutions you are looking to explore. It can get quite overwhelming working in this space, which carries a sense of urgency, politicization, and polarization with it. Stay optimistic, keep advocating, and remember to take care of yourself while doing this important work.

Ethan Harrison

After earning his degree in economics and applied science from the College of William and Mary, Ethan Harrison worked at the United Nations Development Program in its Crisis Bureau as a research officer focused on conflict prevention and predictive analysis. He is currently pursuing his SM in technology and policy at MIT. In his Tata Fellowship, he focuses on the impacts of the Ukraine-Russia conflict on global vulnerability and the global energy market.

Q: How did you become interested in the Tata Fellowship, and how has it influenced your time at MIT?

A: Coming to MIT, one of my chief interests was figuring out how we can leverage gains from technology to improve outcomes and build pro-poor solutions in developing and crisis contexts. The Tata Fellowship aligned with many of the conclusions I drew while working in crisis contexts and some of the outstanding questions that I was hoping to answer during my time at MIT, specifically: How can we leverage technology to build sustainable, participatory, and ethically grounded interventions in these contexts?

My research currently examines the secondary impacts of the Ukraine-Russia conflict on low- and middle-income countries — especially fragile states — with a focus on shocks in the global energy market. This includes the development of a novel framework that systematically identifies factors of vulnerability — such as in energy, food systems, and trade dependence — and quantitatively ranks countries by their level of vulnerability. By identifying the specific mechanisms by which these countries are vulnerable, we can develop a map of global vulnerability and identify key policy solutions that can insulate countries from current and future shocks.

Q: I understand that your research deals with the relationship between oil and gas price fluctuation and political stability. What has been the most surprising aspect of this relationship, and what are its implications for global decarbonization?

A: One surprising aspect is the degree to which citizen grievances regarding price fluctuations can quickly expand to broader democratic demands and destabilization. In Sri Lanka last year and in Egypt during the Arab spring, initial protests around fuel prices and power outages eventually led to broader demands and the loss of power by heads of state. Another surprising aspect is the popularity of fuel subsidies despite the fact that they are economically regressive: They often comprise a large proportion of GDP in poor countries, disproportionately benefit higher-income populations, and leave countries vulnerable to fiscal stress during price spikes.

Regarding implications for global decarbonization, one project we are pursuing examines the implications of directing financing from fuel subsidies toward investments in renewable energy. Countries that rely on fossil fuels for electricity have been hit especially hard 
by price spikes from the Ukraine-Russia conflict, especially since many were carrying costly fuel subsidies to keep the price of fuel and energy artificially low. Much of the international community is advocating for low-income countries to invest in renewables and reduce their fossil fuel burden, but it’s important to explore how global decarbonization can align with efforts to end energy poverty and other Sustainable Development Goals.

Q: How does your research impact the Tata Center’s goal of transforming policy research into real-world solutions, and why is this important?

A: The crisis in Ukraine has shifted the international community’s focus away from other countries in crisis, such as Yemen and Lebanon. By developing a global map of vulnerability, we’re building a large evidence base on which countries have been most impacted by this crisis. Most importantly, by identifying individual channels of vulnerability for each country, we can also identify the most effective policy solutions to insulate vulnerable populations from shocks. Whether that’s advocating for short-term social protection programs or identifying more medium-term policy solutions — like fuel banks or investment in renewables — we hope providing a detailed map of sources of vulnerability can help inform the global response to shocks imposed by the Russia-Ukraine conflict and post-Covid recovery.

Related Links

Related Topics

Related Articles

More MIT News

Andres Sevtsuk stands in the middle of a crosswalk as blurry travelers go by.

Street smarts

Andres Sevtsuk applies new sources of data to creating more sustainable, walkable, and economically thriving city spaces.

Read full story