Skip to content ↓

MIT physicists find unexpected crystals of electrons in new ultrathin material

Rhombohedral pentalayer graphene joins a family of materials with exotic properties that may have other “relatives.”
Press Inquiries

Press Contact:

Elizabeth A. Thomson
Phone: 857-756-9457
MIT Materials Research Laboratory
Close
Abstract illustration featuring an S-shaped river-like flow through an atomic matrix represented as balls and rods
Caption:
This graphic visualizes how electrons can behave as a solid (left, glacier-like structure) or liquid (river-like structure) depending on the voltage applied to a new material cooled to an ultra-low temperature akin to that of outer space.
Credits:
Image: Michael Hurley and Sampson Wilcox/Research Laboratory of Electronics

MIT physicists report the unexpected discovery of electrons forming crystalline structures in a material only billionths of a meter thick. The work adds to a gold mine of discoveries originating from the material, which the same team discovered only about three years ago.

In a paper published Jan. 22 in Nature, the team describes how electrons in devices made, in part, of the new material can become solid, or form crystals, by changing the voltage applied to the devices when they are kept at a temperature similar to that of outer space. Under the same conditions, they also showed the emergence of two new electronic states that add to work they reported last year showing that electrons can split into fractions of themselves.

The physicists were able to make the discoveries thanks to new custom-made filters for better insulation of the equipment involved in the work. These allowed them to cool their devices to a temperature an order of magnitude colder than they achieved for the earlier results.

The team also observed all of these phenomena using two slightly different “versions” of the new material, one composed of five layers of atomically thin carbon; the other composed of four layers. This indicates “that there’s a family of materials where you can get this kind of behavior, which is exciting,” says Long Ju, an assistant professor in the MIT Department of Physics who led the work. Ju is also affiliated with MIT’s Materials Research Laboratory and Research Lab of Electronics.

Referring to the new material, known as rhombohedral pentalayer graphene, Ju says, “We found a gold mine, and every scoop is revealing something new.”

New material

Rhombohedral pentalayer graphene is essentially a special form of pencil lead. Pencil lead, or graphite, is composed of graphene, a single layer of carbon atoms arranged in hexagons resembling a honeycomb structure. Rhombohedral pentalayer graphene is composed of five layers of graphene stacked in a specific overlapping order.

Since Ju and colleagues discovered the material, they have tinkered with it by adding layers of another material they thought might accentuate the graphene’s properties, or even produce new phenomena. For example, in 2023 they created a sandwich of rhombohedral pentalayer graphene with “buns” made of hexagonal boron nitride. By applying different voltages, or amounts of electricity, to the sandwich, they discovered three important properties never before seen in natural graphite.

Last year, Ju and colleagues reported yet another important and even more surprising phenomenon: Electrons became fractions of themselves upon applying a current to a new device composed of rhombohedral pentalayer graphene and hexagonal boron nitride. This is important because this “fractional quantum Hall effect” has only been seen in a few systems, usually under very high magnetic fields. The Ju work showed that the phenomenon could occur in a fairly simple material without a magnetic field. As a result, it is called the “fractional quantum anomalous Hall effect” (anomalous indicates that no magnetic field is necessary).

New results

In the current work, the Ju team reports yet more unexpected phenomena from the general rhombohedral graphene/boron nitride system when it is cooled to 30 millikelvins (1 millikelvin is equivalent to -459.668 degrees Fahrenheit). In last year’s paper, Ju and colleagues reported six fractional states of electrons. In the current work, they report discovering two more of these fractional states.

They also found another unusual electronic phenomenon: the integer quantum anomalous Hall effect in a wide range of electron densities. The fractional quantum anomalous Hall effect was understood to emerge in an electron “liquid” phase, analogous to water. In contrast, the new state that the team has now observed can be interpreted as an electron “solid” phase — resembling the formation of electronic “ice” — that can also coexist with the fractional quantum anomalous Hall states when the system’s voltage is carefully tuned at ultra-low temperatures.

One way to think about the relation between the integer and fractional states is to imagine a map created by tuning electric voltages: By tuning the system with different voltages, you can create a “landscape” similar to a river (which represents the liquid-like fractional states) cutting through glaciers (which represent the solid-like integer effect), Ju explains.

Ju notes that his team observed all of these phenomena not only in pentalayer rhombohedral graphene, but also in rhombohedral graphene composed of four layers. This creates a family of materials, and indicates that other “relatives” may exist.

“This work shows how rich this material is in exhibiting exotic phenomena. We’ve just added more flavor to this already very interesting material,” says Zhengguang Lu, a co-first author of the paper. Lu, who conducted the work as a postdoc at MIT, is now on the faculty at Florida State University.

In addition to Ju and Lu, other principal authors of the Nature paper are Tonghang Han and Yuxuan Yao, both of MIT. Lu, Han, and Yao are co-first authors of the paper who contributed equally to the work. Other MIT authors are Jixiang Yang, Junseok Se, Lihan Shi, and Shenyong Ye. Additional members of the team are Kenji Watanabe and Takashi Taniguchi of the National Institute for Materials Science in Japan.

This work was supported by a Sloan Fellowship, a Mathworks Fellowship, the U.S. Department of Energy, the Japan Society for the Promotion of Science KAKENHI, and the World Premier International Research Initiative of Japan. Device fabrication was performed at the Harvard Center for Nanoscale Systems and MIT.nano. 

Related Links

Related Topics

Related Articles

More MIT News

Illustration showing a peninsula in a river running through Mariupol, labeled in Ukrainian, envisioning how the space could become part of green space, a transportation network, and space for public use

Rebuilding Ukraine

A collaboration between MIT professors of urban studies and planning and the Association of Ukrainian Cities aims to empower Ukraine’s municipal leaders to drive recovery after the war.

Read full story