Skip to content ↓

With a zap of light, system switches objects’ colors and patterns

“Programmable matter” technique could enable product designers to churn out prototypes with ease.
Watch Video
Press Inquiries

Press Contact:

Abby Abazorius
Phone: 617-253-2709
MIT News Office

Media Download

sample of phone case
Download Image
Caption: A new system uses UV light projected onto objects coated with light-activated dye to alter the reflective properties of the dye, creating images in minutes.
Credits: Image: courtesy of the researchers

*Terms of Use:

Images for download on the MIT News office website are made available to non-commercial entities, press and the general public under a Creative Commons Attribution Non-Commercial No Derivatives license. You may not alter the images provided, other than to crop them to size. A credit line must be used when reproducing images; if one is not provided below, credit the images to "MIT."

Close
sample of phone case
Caption:
A new system uses UV light projected onto objects coated with light-activated dye to alter the reflective properties of the dye, creating images in minutes.
Credits:
Image: courtesy of the researchers

When was the last time you repainted your car? Redesigned your coffee mug collection? Gave your shoes a colorful facelift?

You likely answered: never, never, and never. You might consider these arduous tasks not worth the effort. But a new color-shifting “programmable matter” system could change that with a zap of light.

MIT researchers have developed a way to rapidly update imagery on object surfaces. The system, dubbed “ChromoUpdate” pairs an ultraviolet (UV) light projector with items coated in light-activated dye. The projected light alters the reflective properties of the dye, creating colorful new images in just a few minutes. The advance could accelerate product development, enabling product designers to churn through prototypes without getting bogged down with painting or printing.

example
An ultraviolet (UV) light projector is used on a cell-phone case coated in light-activated dye. The projected light alters the reflective properties of the dye, creating images in just a few minutes.

ChromoUpdate “takes advantage of fast programming cycles — things that wouldn’t have been possible before,” says Michael Wessley, the study’s lead author and a postdoc in MIT’s Computer Science and Artificial Intelligence Laboratory.

The research will be presented at the ACM Conference on Human Factors in Computing Systems this month. Wessely’s co-authors include his advisor, Professor Stefanie Mueller, as well as postdoc Yuhua Jin, recent graduate Cattalyya Nuengsigkapian ’19, MNG ’20, visiting master’s student Aleksei Kashapov, postdoc Isabel Qamar, and Professor Dzmitry Tsetserukou of the Skolkovo Institute of Science and Technology.

ChromoUpdate builds on the researchers’ previous programmable matter system, called PhotoChromeleon. That method was “the first to show that we can have high-resolution, multicolor textures that we can just reprogram over and over again,” says Wessely. PhotoChromeleon used a lacquer-like ink comprising cyan, magenta, and yellow dyes. The user covered an object with a layer of the ink, which could then be reprogrammed using light. First, UV light from an LED was shone on the ink, fully saturating the dyes. Next, the dyes were selectively desaturated with a visible light projector, bringing each pixel to its desired color and leaving behind the final image. PhotoChromeleon was innovative, but it was sluggish. It took about 20 minutes to update an image. “We can accelerate the process,” says Wessely.

They achieved that with ChromoUpdate, by fine-tuning the UV saturation process. Rather than using an LED, which uniformly blasts the entire surface, ChromoUpdate uses a UV projector that can vary light levels across the surface. So, the operator has pixel-level control over saturation levels. “We can saturate the material locally in the exact pattern we want,” says Wessely. That saves time — someone designing a car’s exterior might simply want to add racing stripes to an otherwise completed design. ChromoUpdate lets them do just that, without erasing and reprojecting the entire exterior.

This selective saturation procedure allows designers to create a black-and-white preview of a design in seconds, or a full-color prototype in minutes. That means they could try out dozens of designs in a single work session, a previously unattainable feat. “You can actually have a physical prototype to see if your design really works,” says Wessely. “You can see how it looks when sunlight shines on it or when shadows are cast. It’s not enough just to do this on a computer.”

That speed also means ChromoUpdate could be used for providing real-time notifications without relying on screens. “One example is your coffee mug,” says Wessely. “You put your mug in our projector system and program it to show your daily schedule. And it updates itself directly when a new meeting comes in for that day, or it shows you the weather forecast.”

Wessely hopes to keep improving the technology. At present, the light-activated ink is specialized for smooth, rigid surfaces like mugs, phone cases, or cars. But the researchers are working toward flexible, programmable textiles. “We’re looking at methods to dye fabrics and potentially use light-emitting fibers,” says Wessely. “So, we could have clothing — t-shirts and shoes and all that stuff — that can reprogram itself.”

The researchers have partnered with a group of textile makers in Paris to see how ChomoUpdate can be incorporated into the design process.

This research was funded, in part, by Ford.

Press Mentions

Forbes

Writing for Forbes, research affiliate John Werner spotlights Prof. Stefanie Mueller’s presentation at the CSAIL Imagination in Action event on her work developing a new type of paint that allows users to change the color and pattern of different objects. “The long-term vision here, really, is to give those physical objects the same capabilities as we have in digital,” said Mueller. “I hope in the future we will all get some free stuff, and we would just have an [app] where we can download different textures we can apply, and change our outfits.”

Fast Company

Fast Company reporter Mark Wilson writes that MIT researchers have developed a new light-sensitive paint, dubbed ChromoUpdate, that makes it easy for people to change the color and pattern on a variety of objects. Wilson notes there are a number of applications for ChromoUpdate, from testing out different colors on a product to “quickly projecting what is essentially data onto everyday objects could make smart homes even smarter, without the use of more screens in your house.”

Related Links

Related Topics

Related Articles

More MIT News