Skip to content ↓

Topic

DMSE

Download RSS feed: News Articles / In the Media

Displaying 1 - 15 of 62 news clips related to this topic.
Show:

Popular Mechanics

Researchers from MIT’s Plasma Science and Fusion Center (PSFC) and Commonwealth Fusion Systems (CFS) are working on making commercial nuclear fusion a reality, reports Juandre for Popular Mechanics. “CFS will build [the tokamak] SPARC and develop a commercial fusion product, while MIT PSFC will focus on its core mission of cutting-edge research and education,” says Prof. Dennis G. Whyte, director of the PSFC. 

Forbes

Jake Guglin MBA ’19, Jasper Lienhard PhD ’22, Prof. Chris Schuh and University of California Irvine Prof. Tim Rupert have founded Foundation Alloy, a vertically integrated metal part production platform specializing in manufacturing high performing metal parts, reports Ariyana Griffin for Forbes. “By creating stronger metals, we can make lighter parts for planes, cars [which] will make those existing products greener and more efficient,” says Guglin.

Popular Science

Popular Science reporter Andrew Zaleski spotlights Prof. Antoine Allanore and his work developing new methods to extract materials from rock without burning fossil fuels. “The electrification of metal production is groundbreaking,” says Allanore. “It not only allows us to avoid certain fuels and carbon emissions, it opens the door to higher productivity.”

The Boston Globe

The Boston Globe honored a number of MIT faculty and alumni in their Tech Power Players 50, a list of the “most influential – and interesting – people in the Massachusetts technology scene.” MIT honorees include Professor Yet-Ming Chiang, Senior Lecturer Brian Halligan, Professor Tom Leighton, Professor Silvio Micali, Katie Rae (CEO and managing partner for The Engine), and Professor Daniela Rus (director of CSAIL and deputy dean of research for the MIT Schwarzman College of Computing). 

The Daily Beast

Daily Beast reporter Tony Ho Tran writes that MIT researchers have developed a tiny fuel cell that can transform glucose into electricity. “The team behind the new fuel believes it could potentially be used as a coating on medical implants like artificial hearts or pacemakers,” writes Tran. “Those implants could be powered passively while in use without the need for expensive and cumbersome batteries that take up valuable real estate in the body.”

The Boston Globe

MIT researchers have developed a new fuel cell that takes glucose absorbed from food in the human body and turns it into electricity, reports Gwen Egan for Boston.com. “That electricity could power small implants while also being able to withstand up to 600 degrees Celsius — or 1112 degrees Fahrenheit — and measuring just 400 nanometers thick,” writes Egan.

Nature

Nature Physics senior editor Silvia Milana spotlights “Carbon Queen: The Remarkable Life of Nanoscience Pioneer Mildred Dresselhaus” a new book written by MIT News Deputy Editorial Director Maia Weinstock. “Carbon Queen does not only capture the journey into the personal and professional life of an outstanding figure in carbon science, it is a careful account of the evolution of societal attitudes towards women from the 1950s to today” writes Milana.

Boston Business Journal

MIT announced five projects "targeting the world's toughest climate riddles" that were selected following a rigorous two-year competition, reports Benjamin Kail for Boston Business Journal. “Climate Grand Challenges represents a whole-of-MIT drive to develop game-changing advances to confront the escalating climate crisis, in time to make a difference,” says President L. Rafael Reif.

Inverse

Researchers from MIT have developed a new fabric that can hear and interpret what’s happening on and inside our bodies, reports Elana Spivack for Inverse. Beyond applications for physical health the researchers envision that the fabric could eventually be integrated with “spacecraft skin to listen to [accumulating] space dust, or embedded into buildings to detect cracks or strains,” explains Wei Yan, who helped develop the fabric as an MIT postdoc. “It can even be woven into a smart net to monitor fish in the ocean. It can also facilitate the communications between people who are hard of [hearing].”

The Daily Beast

Daily Beast reporter Miriam Fauzia writes that MIT researchers have developed a new way to create carbon fibers that are stronger and lighter than steel, using leftover waste from crude oil processing. “The new findings could usher in an age of heavy-duty cars that consume less fuel thanks to their decreased weight,” writes Fauzia.

The Hill

Hill reporters Saul Elbein and Sharon Udasin spotlight how MIT researchers have developed a way to make lightweight fibers for possible use in the bodies of cars out of the waste material from the refining of petroleum. “The ‘heavy, gloppy’ leftovers from the petroleum refining process could become a key ingredient in making electric vehicles lighter, less expensive and more efficient,” they write.

WHDH 7

Prof. Yoel Fink speaks with WHDH about his team’s work developing an acoustic fabric that can listen to and record sound, a development inspired by the human ear. "The fabric can be inserted into clothes to monitor heart rate and respiration. It can even help with monitoring unborn babies during pregnancy."

Bloomberg News

Bloomberg News spotlights how MIT researchers have developed a new material that works like a microphone, converting sounds into vibrations and then electrical signals. “The development means the possibility of clothes that act as hearing aids, clothes that answer phone calls, and garments that track heart and breathing rates,” writes Bloomberg News.

Popular Science

Researchers from MIT and the Rhode Island School of Design have developed a wearable fabric microphone that can detect and transmit soundwaves and convert them into electrical signals, reports Shi En Kim for Popular Science. “Computers are going to really become fabrics," says Prof. Yoel Fink. "We’re getting very close.”

The Daily Beast

MIT researchers have created a flexible fiber that can generate electrical impulses that are conveyed to the brain as sound, reports Miriam Fauzia for The Daily Beast. “The researchers see endless possibilities for their smart fabric,” writes Fauzia. “The obvious application is in improving hearing aids, which Fink said have trouble discerning the direction of sound, particularly in noisy environments. But the fabric could also help engineers design wearable fabrics that can measure vital signs, monitor space dust in new kinds of spacecraft, and listen for signs of deterioration in buildings like emerging cracks and strains.”