Daniela Rus wins John Scott Award
MIT CSAIL director and EECS professor named a co-recipient of the honor for her robotics research, which has expanded our understanding of what a robot can be.
MIT CSAIL director and EECS professor named a co-recipient of the honor for her robotics research, which has expanded our understanding of what a robot can be.
Researchers develop “ContextCite,” an innovative method to track AI’s source attribution and detect potential misinformation.
First organized MIT delegation highlights the Institute's growing commitment to addressing climate change by showcasing research on biodiversity conservation, AI, and the role of local communities.
Researchers propose a simple fix to an existing technique that could help artists, designers, and engineers create better 3D models.
The Tree-D Fusion system integrates generative AI and genus-conditioned algorithms to create precise simulation-ready models of 600,000 existing urban trees across North America.
MIT CSAIL researchers used AI-generated images to train a robot dog in parkour, without real-world data. Their LucidSim system demonstrates generative AI's potential for creating robotics training data.
Yiming Chen ’24, Wilhem Hector, Anushka Nair, and David Oluigbo will start postgraduate studies at Oxford next fall.
A new design tool uses UV and RGB lights to change the color and textures of everyday objects. The system could enable surfaces to display dynamic patterns, such as health data and fashion designs.
The new Tayebati Postdoctoral Fellowship Program will support leading postdocs to bring cutting-edge AI to bear on research in scientific discovery or music.
Inspired by large language models, researchers develop a training technique that pools diverse data to teach robots new skills.
“MouthIO” is an in-mouth device that users can digitally design and 3D print with integrated sensors and actuators to capture health data and interact with a computer or phone.
By allowing users to clearly see data referenced by a large language model, this tool speeds manual validation to help users spot AI errors.
A new method can train a neural network to sort corrupted data while anticipating next steps. It can make flexible plans for robots, generate high-quality video, and help AI agents navigate digital environments.
By using a 3D printer like an iron, researchers can precisely control the color, shade, and texture of fabricated objects, using only one material.
MIT CSAIL researchers created an AI-powered method for low-discrepancy sampling, which uniformly distributes data points to boost simulation accuracy.