Skip to content ↓

Persistent “hiccups” in a far-off galaxy draw astronomers to new black hole behavior

Analysis reveals a tiny black hole repeatedly punching through a larger black hole’s disk of gas.
Press Inquiries

Press Contact:

Abby Abazorius
Phone: 617-253-2709
MIT News Office

Media Download

A large black hole has a spinning disk around it. It also has a magnetic field represented as an orange cone on top and bottom of the black hole. A tiny black hole punches in and out through the disk as it orbits the larger one. Plumes from the large disk emerge when the tiny black hole travels. The plumes are especially strong in the magnetic fields.
Download Image
Caption: Scientists have found a large black hole that “hiccups,” giving off plumes of gas. Analysis revealed a tiny black hole was repeatedly punching through the larger black hole’s disk of gas, causing the plumes to release. Powerful magnetic fields, to the north and south of the black hole and represented by the orange cone, slingshot the plume up and out of the disk. Each time the smaller black hole punches through the disk, it would eject another plume, in a regular, periodic pattern.
Credits: Image: Jose-Luis Olivares, MIT

*Terms of Use:

Images for download on the MIT News office website are made available to non-commercial entities, press and the general public under a Creative Commons Attribution Non-Commercial No Derivatives license. You may not alter the images provided, other than to crop them to size. A credit line must be used when reproducing images; if one is not provided below, credit the images to "MIT."

Close
A large black hole has a spinning disk around it. It also has a magnetic field represented as an orange cone on top and bottom of the black hole. A tiny black hole punches in and out through the disk as it orbits the larger one. Plumes from the large disk emerge when the tiny black hole travels. The plumes are especially strong in the magnetic fields.
Caption:
Scientists have found a large black hole that “hiccups,” giving off plumes of gas. Analysis revealed a tiny black hole was repeatedly punching through the larger black hole’s disk of gas, causing the plumes to release. Powerful magnetic fields, to the north and south of the black hole and represented by the orange cone, slingshot the plume up and out of the disk. Each time the smaller black hole punches through the disk, it would eject another plume, in a regular, periodic pattern.
Credits:
Image: Jose-Luis Olivares, MIT

At the heart of a far-off galaxy, a supermassive black hole appears to have had a case of the hiccups.

Astronomers from MIT, Italy, the Czech Republic, and elsewhere have found that a previously quiet black hole, which sits at the center of a galaxy about 800 million light-years away, has suddenly erupted, giving off plumes of gas every 8.5 days before settling back to its normal, quiet state.

The periodic hiccups are a new behavior that has not been observed in black holes until now. The scientists believe the most likely explanation for the outbursts stems from a second, smaller black hole that is zinging around the central, supermassive black hole and slinging material out from the larger black hole’s disk of gas every 8.5 days.

The team’s findings, which are published today in the journal Science Advances, challenge the conventional picture of black hole accretion disks, which scientists had assumed are relatively uniform disks of gas that rotate around a central black hole. The new results suggest that accretion disks may be more varied in their contents, possibly containing other black holes and even entire stars.

Animation of small circle orbiting another circle in center of lenses opening. Bright orange fumes emit from top and bottom.
A computer simulation of an intermediate-mass black hole orbiting a supermassive black hole, and driving periodic gas plumes that can explain the observations. 

Credit: Petra Sukova, Astronomical Institute of the CAS

“We thought we knew a lot about black holes, but this is telling us there are a lot more things they can do,” says study author Dheeraj “DJ” Pasham, a research scientist in MIT’s Kavli Institute for Astrophysics and Space Research. “We think there will be many more systems like this, and we just need to take more data to find them.”

The study’s MIT co-authors include postdoc Peter Kosec, graduate student Megan Masterson, Associate Professor Erin Kara, Principal Research Scientist Ronald Remillard, and former research scientist Michael Fausnaugh, along with collaborators from multiple institutions, including the Tor Vergata University of Rome, the Astronomical Institute of the Czech Academy of Sciences, and Masaryk University in the Czech Republic.

“Use it or lose it”

The team’s findings grew out of an automated detection by ASAS-SN (the All Sky Automated Survey for SuperNovae), a network of 20 robotic telescopes situated in various locations across the Northern and Southern Hemispheres. The telescopes automatically survey the entire sky once a day for signs of supernovae and other transient phenomena.

In December of 2020, the survey spotted a burst of light in a galaxy about 800 million light years away. That particular part of the sky had been relatively quiet and dark until the telescopes’ detection, when the galaxy suddenly brightened by a factor of 1,000. Pasham, who happened to see the detection reported in a community alert, chose to focus in on the flare with NASA’s NICER (the Neutron star Interior Composition Explorer), an X-ray telescope aboard the International Space Station that continuously monitors the sky for X-ray bursts that could signal activity from neutron stars, black holes, and other extreme gravitational phenomena. The timing was fortuitous, as it was getting toward the end of the yearlong period during which Pasham had permission to point, or “trigger,” the telescope.

“It was either use it or lose it, and it turned out to be my luckiest break,” he says.

He trained NICER to observe the far-off galaxy as it continued to flare. The outburst lasted about four months before petering out. During that time, NICER took measurements of the galaxy’s X-ray emissions on a daily, high-cadence basis. When Pasham looked closely at the data, he noticed a curious pattern within the four-month flare: subtle dips, in a very narrow band of X-rays, that seemed to reappear every 8.5 days.

It seemed that the galaxy’s burst of energy periodically dipped every 8.5 days. The signal is similar to what astronomers see when an orbiting planet crosses in front of its host star, briefly blocking the star’s light. But no star would be able to block a flare from an entire galaxy.

“I was scratching my head as to what this means because this pattern doesn’t fit anything that we know about these systems,” Pasham recalls.

Punch it

As he was looking for an explanation to the periodic dips, Pasham came across a recent paper by theoretical physicists in the Czech Republic. The theorists had separately worked out that it would be possible, in theory, for a galaxy’s central supermassive black hole to host a second, much smaller black hole. That smaller black hole could orbit at an angle from its larger companion’s accretion disk.

As the theorists proposed, the secondary would periodically punch through the primary black hole’s disk as it orbits. In the process, it would release a plume of gas, like a bee flying through a cloud of pollen. Powerful magnetic fields, to the north and south of the black hole, could then slingshot the plume up and out of the disk. Each time the smaller black hole punches through the disk, it would eject another plume, in a regular, periodic pattern. If that plume happened to point in the direction of an observing telescope, it might observe the plume as a dip in the galaxy’s overall energy, briefly blocking the disk’s light every so often.

“I was super excited by this theory, and I immediately emailed them to say, ‘I think we’re observing exactly what your theory predicted,’” Pasham says.

He and the Czech scientists teamed up to test the idea, with simulations that incorporated NICER’s observations of the original outburst, and the regular, 8.5-day dips. What they found supports the theory: The observed outburst was likely a signal of a second, smaller black hole, orbiting a central supermassive black hole, and periodically puncturing its disk.

Specifically, the team found that the galaxy was relatively quiet prior to the December 2020 detection. The team estimates the galaxy’s central supermassive black hole is as massive as 50 million suns. Prior to the outburst, the black hole may have had a faint, diffuse accretion disk rotating around it, as a second, smaller black hole, measuring 100 to 10,000 solar masses, was orbiting in relative obscurity.

The researchers suspect that, in December 2020, a third object — likely a nearby star — swung too close to the system and was shredded to pieces by the supermassive black hole’s immense gravity — an event that astronomers know as a “tidal disruption event.” The sudden influx of stellar material momentarily brightened the black hole’s accretion disk as the star’s debris swirled into the black hole. Over four months, the black hole feasted on the stellar debris as the second black hole continued orbiting. As it punched through the disk, it ejected a much larger plume than it normally would, which happened to eject straight out toward NICER’s scope.

The team carried out numerous simulations to test the periodic dips. The most likely explanation, they conclude, is a new kind of David-and-Goliath system — a tiny, intermediate-mass black hole, zipping around a supermassive black hole.

“This is a different beast,” Pasham says. “It doesn’t fit anything that we know about these systems. We’re seeing evidence of objects going in and through the disk, at different angles, which challenges the traditional picture of a simple gaseous disk around black holes. We think there is a huge population of these systems out there.”

“This is a brilliant example of how to use the debris from a disrupted star to illuminate the interior of a galactic nucleus which would otherwise remain dark. It is akin to using fluorescent dye to find a leak in a pipe,” says Richard Saxton, an X-ray astronomer from the European Space Astronomy Centre (ESAC) in Madrid, who was not involved in the study. “This result shows that very close super-massive black hole binaries could be common in galactic nuclei, which is a very exciting development for future gravitational wave detectors.”

This research was supported, in part, by NASA.

Press Mentions

Astronomy

Researchers at MIT have discovered that a previously witnessed supermassive black hole has “a smaller companion black hole zipping around it, kicking up dust every time it goes by,” reports John Wenz for Astronomy. This discovery “shakes up our thinking of what the environment at the core of the galaxy looks like,” explains Wenz. “Instead of a simple disk of matter surrounding the central black hole, steadily swirling across its event horizon, the centers of galaxies could host multiple black holes of different sizes, leading to more complex feeding behavior.”

Space.com

Astronomers from MIT and other institutions have found that periodic eruptions from a supermassive black hole located in a galaxy about 800 million light-years from Earth could be caused by a, “second, smaller black hole slamming into a disk of gas and dust, or ‘accretion disk,’ surrounding the supermassive black hole, causing it to repeatedly ‘hiccup’ out matter,” writes Rob Lea for Space.com

Related Links

Related Topics

Related Articles

More MIT News