Skip to content ↓

MIT astronomers find the smallest asteroids ever detected in the main belt

The team’s detection method, which identified 138 space rocks ranging from bus- to stadium-sized, could aid in tracking potential asteroid impactors.
Illustration of the James Webb Space Telescope shining light on a population of small asteroids
Caption:
An artist’s illustration of NASA’s James Webb Space Telescope revealing, in the infrared, a population of small main-belt asteroids.
Credits:
Image: Ella Maru and Julien de Wit

The asteroid that extinguished the dinosaurs is estimated to have been about 10 kilometers across. That’s about as wide as Brooklyn, New York. Such a massive impactor is predicted to hit Earth rarely, once every 100 million to 500 million years.

In contrast, much smaller asteroids, about the size of a bus, can strike Earth more frequently, every few years. These “decameter” asteroids, measuring just tens of meters across, are more likely to escape the main asteroid belt and migrate in to become near-Earth objects. If they make impact, these small but mighty space rocks can send shockwaves through entire regions, such as the 1908 impact in Tunguska, Siberia, and the 2013 asteroid that broke up in the sky over Chelyabinsk, Urals. Being able to observe decameter main-belt asteroids would provide a window into the origin of meteorites.

Now, an international team led by physicists at MIT have found a way to spot the smallest decameter asteroids within the main asteroid belt — a rubble field between Mars and Jupiter where millions of asteroids orbit. Until now, the smallest asteroids that scientists were able to discern there were about a kilometer in diameter. With the team’s new approach, scientists can now spot asteroids in the main belt as small as 10 meters across. 

In a paper appearing today in the journal Nature, the researchers report that they have used their approach to detect more than 100 new decameter asteroids in the main asteroid belt. The space rocks range from the size of a bus to several stadiums wide, and are the smallest asteroids within the main belt that have been detected to date.

Animation of a population of small asteroids being revealed in infrared light.
Scientists can now spot asteroids in the main belt as small as 10 meters across with the team's new approach.

Credit: Ella Maru/Julien de Wit

The researchers envision that the approach can be used to identify and track asteroids that are likely to approach Earth.

“We have been able to detect near-Earth objects down to 10 meters in size when they are really close to Earth,” says the study’s lead author, Artem Burdanov, a research scientist in MIT’s Department of Earth, Atmospheric and Planetary Sciences. “We now have a way of spotting these small asteroids when they are much farther away, so we can do more precise orbital tracking, which is key for planetary defense.”

The study’s co-authors include MIT professors of planetary science Julien de Wit and Richard Binzel, along with collaborators from multiple other institutions, including the University of Liege in Belgium, Charles University in the Czech Republic, the European Space Agency, and institutions in Germany including Max Planck Institute for Extraterrestrial Physics, and the University of Oldenburg.

Image shift

De Wit and his team are primarily focused on searches and studies of exoplanets — worlds outside the solar system that may be habitable. The researchers are part of the group that in 2016 discovered a planetary system around TRAPPIST-1, a star that’s about 40 light years from Earth. Using the Transiting Planets and Planetismals Small Telescope (TRAPPIST) in Chile, the team confirmed that the star hosts rocky, Earth-sized planets, several of which are in the habitable zone.

Scientists have since trained many telescopes, focused at various wavelengths, on the TRAPPIST-1 system to further characterize the planets and look for signs of life. With these searches, astronomers have had to pick through the “noise” in telescope images, such as any gas, dust, and planetary objects between Earth and the star, to more clearly decipher the TRAPPIST-1 planets. Often, the noise they discard includes passing asteroids.

“For most astronomers, asteroids are sort of seen as the vermin of the sky, in the sense that they just cross your field of view and affect your data,” de Wit says.

De Wit and Burdanov wondered whether the same data used to search for exoplanets could be recycled and mined for asteroids in our own solar system. To do so, they looked to “shift and stack,” an image processing technique that was first developed in the 1990s. The method involves shifting multiple images of the same field of view and stacking the images to see whether an otherwise faint object can outshine the noise.

Applying this method to search for unknown asteroids in images that are originally focused on far-off stars would require significant computational resources, as it would involve testing a huge number of scenarios for where an asteroid might be. The researchers would then have to shift thousands of images for each scenario to see whether an asteroid is indeed where it was predicted to be.

Several years ago, Burdanov, de Wit, and MIT graduate student Samantha Hasler found they could do that using state-of-the-art graphics processing units that can process an enormous amount of imaging data at high speeds.

They initially tried their approach on data from the SPECULOOS (Search for habitable Planets EClipsing ULtra-cOOl Stars) survey — a system of ground-based telescopes that takes many images of a star over time. This effort, along with a second application using data from a telescope in Antarctica, showed that researchers could indeed spot a vast amount of new asteroids in the main belt.

“An unexplored space”

For the new study, the researchers looked for more asteroids, down to smaller sizes, using data from the world’s most powerful observatory — NASA’s James Webb Space Telescope (JWST), which is particularly sensitive to infrared rather than visible light. As it happens, asteroids that orbit in the main asteroid belt are much brighter at infrared wavelengths than at visible wavelengths, and thus are far easier to detect with JWST’s infrared capabilities.

The team applied their approach to JWST images of TRAPPIST-1. The data comprised more than 10,000 images of the star, which were originally obtained to search for signs of atmospheres around the system’s inner planets. After processing the images, the researchers were able to spot eight known asteroids in the main belt. They then looked further and discovered 138 new asteroids around the main belt, all within tens of meters in diameter — the smallest main belt asteroids detected to date. They suspect a few asteroids are on their way to becoming near-Earth objects, while one is likely a Trojan — an asteroid that trails Jupiter.

“We thought we would just detect a few new objects, but we detected so many more than expected, especially small ones,” de Wit says. “It is a sign that we are probing a new population regime, where many more small objects are formed through cascades of collisions that are very efficient at breaking down asteroids below roughly 100 meters.”

“Statistics of these decameter main belt asteroids are critical for modelling,” adds Miroslav Broz, co-author from the Prague Charles University in Czech Republic, and a specialist of the various asteroid populations in the solar system. “In fact, this is the debris ejected during collisions of bigger, kilometers-sized asteroids, which are observable and often exhibit similar orbits about the Sun, so that we group them into ‘families’ of asteroids.”

“This is a totally new, unexplored space we are entering, thanks to modern technologies,” Burdanov says. “It’s a good example of what we can do as a field when we look at the data differently. Sometimes there’s a big payoff, and this is one of them.”

This work was supported, in part, by the Heising-Simons Foundation, the Czech Science Foundation, and the NVIDIA Academic Hardware Grant Program.

Press Mentions

Bloomberg

Prof. Richard Binzel speaks with Bloomberg reporter F.D. Flam about tracking asteroid 2024 YR4. “It might seem like things are getting more dangerous or more scary, but what's really happening is we're making ourselves more and more secure,” says Binzel. 

Forbes

Prof. Richard Binzel speaks with Forbes reporter Jamie Carter about how astronomers are working to determine the trajectory of asteroid 2024 YR4. “Eventually, we expect the probability to fall to zero and reach Torino Scale 0 (all clear!),” says Binzel. “The uncertainty region, which looks like a long spaghetti of fettuccine string, shrinks as we get tracking data over a longer and longer piece of the asteroid’s orbit.”

CBS Boston

Prof. Richard Binzel, creator of the Torino scale that NASA uses to measure the threat of incoming objects, speaks with Brandon Truitt of CBS Boston about his quest to track 2024 YR4, an asteroid that astronomers are closely monitoring to see how close it might come to Earth in 2032. “As we get more and more measurements, we keep tracking the asteroid, that uncertainty window, that broad range of where it could go it's going to shrink and shrink," says Binzel. "Until the Earth falls outside of that pathway, we're going to see these probabilities bounce around."

CNN

Prof. Richard Binzel speaks with CNN reporter Ashley Strickland about the trajectory of asteroid 2024 YR4. “YR4 presents a challenge because it is small and headed away. Telescopes on the ground can track it for a few more months. Then we’ll call (the James Webb Space Telescope) into service to track it even further, if needed,” says Binzel. “While certainty for 2024 YR4 missing the Earth is the outcome we expect, it’s not up to us. It’s for nature to decided. In fact, nature already has settled the question. We just don’t know that answer yet. That’s why our tracking efforts continue.”

NBC Boston

Prof. Richard Binzel, Prof. Julien de Wit, and Research Scientist Artem Burdanov speak with NBC 10 Boston reporter Matt Fortin about their new asteroid-detecting method that will be used to track the newly discovered asteroid 2024 YR4. “By refining and applying their technique, my colleagues [de Wit and Burdanov] have basically turned the JWST into the most capable asteroid-tracking system in history,” explains Binzel.

NBC News

In an interview with NBC News reporter Kathy Park, Prof. Richard Binzel, Prof. Julien de Wit, and Research Scientist Artem Burdanov provide insight into astronomer's efforts to learn more about asteroid 2024 YR4. “This is an object that merits tracking by astronomers, merits our attention and that’s simply what we are doing,” says Binzel. 

The Boston Globe

Profs. Richard Binzel, Julien de Wit and Research Scientist Artem Burdanov speak with Boston Globe reporter Sarah Mesdjian about asteroid 2024 YR4 and their work developing a new method to “find and track far-away asteroids that were previously undetectable by using technology they compared to long-exposure images.” Says Binzel: “With improving technology, we are going to be aware of more and more of these objects.” He adds: “It’s a really important learning process what we’re doing right now. So when we find more and more of them, we know how to quickly process them and assess which of them are really worth looking further into.”

Boston.com

Research Scientist Artem Burdanov speaks with Boston.com reporter Molly Farrar about asteroid 2024 YR4. Burdanov and his colleagues recently developed a new detection method that could be used to track potential asteroid impactors and help protect our planet. “We need to observe it more, and then we can make an informed decision,” says Burdanov, “but it’s good that we have telescopes and scientists who can do this type of work and inform the public about the threat.” 

WBZ Radio

Research Scientist Artem Burdanov speaks with WBZ News Radio reporter Chaiel Schaffel about his team’s work developing a new detection method that could be used to track potential asteroid impactors like 2024 YR4 and help protect our planet. Burdanov and his colleagues used the new method to detect “138 asteroids ranging in size from a bus to the size of Gillette Stadium.” Burdanov explains that he and his colleagues "used a clever technique to find asteroids that are hidden in the noise.” 

National Geographic

Prof. Julien de Wit speaks with National Geographic reporter Robin George Andrews about how special infrared filters on the James Webb Space Telescope (JWST) can be used to find small asteroids and precisely determine their size. “Asteroids get much brighter in the infrared than in the visible as they move away from Earth, and they are thus easier to detect or track with infrared facilities—JWST being the biggest of all,” says de Wit. 

The Boston Globe

Researchers at MIT and elsewhere have found “the smallest asteroids ever detected within the main belt, which is a field between Mars and Jupiter where millions of asteroids orbit,” reports Sabrina Lam for The Boston Globe. “With new technology, we can find populations of asteroids that were inaccessible previously,” says Prof. Julien De Wit.  “Now we have the capability to be able to study this object further out, predict the orbit with much better accuracy, and decide what to do for potential or possible future impactors.”

National Geographic

Using the James Webb Space Telescope (JWST), MIT astronomers have spotted “small space rocks – including some just dozens of feet in length, the tiniest ever discovered in our solar system’s main asteroid belt between Mars and Jupiter,” reports Robin George Andrews for National Geographic. “This work helps to fill in astronomers’ understanding of the asteroid belt, the wreckage left behind from the inner solar system’s formation—and it’s always nice to spy more of those rocky time capsules for future study,” explains Andrews. 

IFL Science

MIT scientists have discovered the smallest asteroids known to exist in the Main Asteroid Belt between Mars and Jupiter, reports Alfredo Carpineti for IFL Science. “The team of researchers behind this new discovery cleverly reused images from the search for exoplanets,” writes Carpineti. “Stacks of images looking at the same distant star field were used with a technique called “shift and stack”, which aims to highlight possible movement in the foreground, like from an asteroid. They were able to find 138 asteroids in the decameter size range.”

Related Links

Related Topics

Related Articles

More MIT News