Skip to content ↓

A wearable ultrasound scanner could detect breast cancer earlier

The new device, which can be incorporated into a bra, could allow more frequent monitoring of patients at high risk for breast cancer.
Watch Video
Press Inquiries

Press Contact:

Sarah McDonnell
Phone: 617-253-8923
Fax: 617-258-8762
MIT News Office

Media Download

Standing before a green background, photo shows a woman's torso from shoulders to waist. She is wearing a white plastic meshlike device with honeycomb-shaped holes and small metallic parts over one breast. The device is attached to a black sports bra. In one hand she holds a green circuit board that hangs via thin, flat cable from the device.
Download Image
Caption: In hopes of improving the breast cancer survival rate, MIT researchers designed a wearable ultrasound device that could allow patients to detect tumors when they are still in early stages.
Credits: Image: Canan Dagdeviren
On the left of the photo, a yellow strip-cable has a green circuit board on one end, and a small ultrasound tracker on the other. On the right, the white device is teardrop shaped and has a hexagonal grid of holes where the tracker can be placed.
Download Image
Caption: “We changed the form factor of the ultrasound technology so that it can be used in your home. It’s portable and easy to use, and provides real-time, user-friendly monitoring of breast tissue,” says Canan Dagdeviren, an associate professor in MIT’s Media Lab and the senior author of the study.
Credits: Image: Canan Dagdeviren
A close-up of the tracker shows that it is Y-shaped and has 3 metallic discs. The tracker is at the end of a yellow strip-cable.
Download Image
Caption: The device is a flexible patch that can be attached to a bra, allowing the wearer to move an ultrasound tracker along the patch and image the breast tissue from different angles.
Credits: Image: Canan Dagdeviren
2 images show, on left: a handwritten note with a bra-type illustration, and happy and sad face drawings. It is dated “20th August 2015.” On the right is a photo of Dagdeviren with arms around her aunt, smiling.
Download Image
Caption: At her aunt’s bedside, Dagdeviren, then a postdoc at MIT, drew up a rough schematic of a diagnostic device that could be incorporated into a bra and would allow for more frequent screening of women at high risk for breast cancer.
Credits: Image: Canan Dagdeviren

*Terms of Use:

Images for download on the MIT News office website are made available to non-commercial entities, press and the general public under a Creative Commons Attribution Non-Commercial No Derivatives license. You may not alter the images provided, other than to crop them to size. A credit line must be used when reproducing images; if one is not provided below, credit the images to "MIT."

Close
Standing before a green background, photo shows a woman's torso from shoulders to waist. She is wearing a white plastic meshlike device with honeycomb-shaped holes and small metallic parts over one breast. The device is attached to a black sports bra. In one hand they hold a green circuit board that hangs via thin, flat cable from the device.
Caption:
In hopes of improving the breast cancer survival rate, MIT researchers designed a wearable ultrasound device that could allow patients to detect tumors when they are still in early stages.
Credits:
Image: Canan Dagdeviren
On the left of the photo, a yellow strip-cable has a green circuit board on one end, and a small ultrasound tracker on the other. On the right, the white device is teardrop shaped and has a hexagonal grid of holes where the tracker can be placed.
Caption:
“We changed the form factor of the ultrasound technology so that it can be used in your home. It’s portable and easy to use, and provides real-time, user-friendly monitoring of breast tissue,” says Canan Dagdeviren, an associate professor in MIT’s Media Lab and the senior author of the study.
Credits:
Image: Canan Dagdeviren
A close-up of the tracker shows that it is Y-shaped and has 3 metallic discs. The tracker is at the end of a yellow strip-cable.
Caption:
The device is a flexible patch that can be attached to a bra, allowing the wearer to move an ultrasound tracker along the patch and image the breast tissue from different angles.
Credits:
Image: Canan Dagdeviren
2 images show, on left: a handwritten note with a bra-type illustration, and happy and sad face drawings. It is dated “20th August 2015.” On the right is a photo of Dagdeviren with arms around her aunt, smiling.
Caption:
At her aunt’s bedside, Dagdeviren, then a postdoc at MIT, drew up a rough schematic of a diagnostic device that could be incorporated into a bra and would allow for more frequent screening of women at high risk for breast cancer.
Credits:
Image: Canan Dagdeviren

When breast cancer is diagnosed in the earliest stages, the survival rate is nearly 100 percent. However, for tumors detected in later stages, that rate drops to around 25 percent.

In hopes of improving the overall survival rate for breast cancer patients, MIT researchers have designed a wearable ultrasound device that could allow people to detect tumors when they are still in early stages. In particular, it could be valuable for patients at high risk of developing breast cancer in between routine mammograms.

The device is a flexible patch that can be attached to a bra, allowing the wearer to move an ultrasound tracker along the patch and image the breast tissue from different angles. In the new study, the researchers showed that they could obtain ultrasound images with resolution comparable to that of the ultrasound probes used in medical imaging centers.

“We changed the form factor of the ultrasound technology so that it can be used in your home. It’s portable and easy to use, and provides real-time, user-friendly monitoring of breast tissue,” says Canan Dagdeviren, an associate professor in MIT’s Media Lab and the senior author of the study.

MIT graduate student Wenya Du, Research Scientist Lin Zhang, Emma Suh ’23, and Dabin Lin, a professor at Xi’an Technological University, are the lead authors of the paper, which appears today in Science Advances.

A wearable diagnostic

For this project, Dagdeviren drew inspiration from her late aunt, Fatma Caliskanoglu, who was diagnosed with late-stage breast cancer at age 49, despite having regular cancer screens, and passed away six months later. At her aunt’s bedside, Dagdeviren, then a postdoc at MIT, drew up a rough schematic of a diagnostic device that could be incorporated into a bra and would allow for more frequent screening of individuals at high risk for breast cancer. 

Breast tumors that develop in between regularly scheduled mammograms — known as interval cancers — account for 20 to 30 percent of all breast cancer cases, and these tumors tend to be more aggressive than those found during routine scans.

“My goal is to target the people who are most likely to develop interval cancer,” says Dagdeviren, whose research group specializes in developing wearable electronic devices that conform to the body. “With more frequent screening, our goal to increase the survival rate to up to 98 percent.”

To make her vision of a diagnostic bra a reality, Dagdeviren designed a miniaturized ultrasound scanner that could allow the user to perform imaging at any time. This scanner is based on the same kind of ultrasound technology used in medical imaging centers, but incorporates a novel piezoelectric material that allowed the researchers to miniaturize the ultrasound scanner.

To make the device wearable, the researchers designed a flexible, 3D-printed patch, which has honeycomb-like openings. Using magnets, this patch can be attached to a bra that has openings that allow the ultrasound scanner to contact the skin. The ultrasound scanner fits inside a small tracker that can be moved to six different positions, allowing the entire breast to be imaged. The scanner can also be rotated to take images from different angles, and does not require any special expertise to operate.

“This technology provides a fundamental capability in the detection and early diagnosis of breast cancer, which is key to a positive outcome,” says Anantha Chandrakasan, dean of MIT’s School of Engineering, the Vannevar Bush Professor of Electrical Engineering and Computer Science, and one of the authors of the study. “This work will significantly advance ultrasound research and medical device designs, leveraging advances in materials, low-power circuits, AI algorithms, and biomedical systems.”

Early detection

Working with the MIT Center for Clinical and Translational Research, the researchers tested their device on one human subject, a 71-year-old woman with a history of breast cysts. Using the new device, the researchers were able to detect the cysts, which were as small as 0.3 centimeters in diameter — the size of early-stage tumors. They also showed that the device achieved resolution comparable to that of traditional ultrasound, and tissue can be imaged at a depth up to 8 centimeters.

“Access to quality and affordable health care is essential for early detection and diagnosis. As a nurse I have witnessed the negative outcomes of a delayed diagnosis. This technology holds the promise of breaking down the many barriers for early breast cancer detection by providing a more reliable, comfortable, and less intimidating diagnostic,” says Catherine Ricciardi, nurse director at MIT’s Center for Clinical and Translational Research and an author of the study.

To see the ultrasound images, the researchers currently have to connect their scanner to the same kind of ultrasound machine used in imaging centers. However, they are now working on a miniaturized version of the imaging system that would be about the size of a smartphone.

The wearable ultrasound patch can be used over and over, and the researchers envision that it could be used at home by people who are at high risk for breast cancer and could benefit from frequent screening. It could also help diagnose cancer in people who don’t have regular access to screening.

“Breast cancer is the most common cancer among women, and it is treatable when detected early,” says Tolga Ozmen, a breast cancer surgeon at Massachusetts General Hospital who is also an author of the study. “One of the main obstacles in imaging and early detection is the commute that the women have to make to an imaging center. This conformable ultrasound patch is a highly promising technology as it eliminates the need for women to travel to an imaging center.”

The researchers hope to develop a workflow so that once data are gathered from a subject, artificial intelligence can be used to analyze how the images change over time, which could offer more accurate diagnostics than relying on the assessment of a radiologist comparing images taken years apart. They also plan to explore adapting the ultrasound technology to scan other parts of the body.

The research was funded, in part, by the National Science Foundation, a 3M Non-Tenured Faculty Award, the Sagol Weizmann-MIT Bridge Program, and MIT Media Lab Consortium Funding.

Press Mentions

CNN

Profs. Canan Dagdeviren and Hugh Herr speak with CNN discuss their work aimed at empowering patients and doctors. Inspired by her aunt’s experience with breast cancer, Dagdeviren and her students are developing new wearable devices that could help detect cancer at an earlier stage. Says Herr of his work developing prosthetics that can be controlled by the human nervous system: “There will be a point where technology is so sophisticated that we can actually rebuild limbs after amputation that will be as good and, ultimately, they will be better than intact biological limbs.” Herr adds that in the future he hopes “the conversation will not be about human limitation anymore. It will be about human ability and human expression.”

CNN

CNN visits the lab of Prof. Canan Dagdeviren to learn more about her work developing wearable ultrasound devices that could help screen for early-stage breast cancer, monitor kidney health, and detect other cancers deep within the body. “Wearable technology will grow rapidly in the near future,” says Dagdeviren. “But in the far future, they will be one of the most powerful tools that we will be seeing in our daily life.” 

Wired

Prof. Canan Dagdeviren and her team have developed a wearable ultrasound patch that can be used to screen for breast cancer at home, reports Grace Browne for Wired. “Dagdeviren wants to give people the opportunity to know what’s happening inside their bodies every day, the same way we check the weather forecast,” writes Browne.

National Geographic

MIT researchers have designed a wearable ultrasound device that could help make breast cancer screening more accessible, reports Carrie Arnold for National Geographic.  “Early detection is the key for survival,” says Prof. Canan Dagdeviren. “Our humble calculation shows that this technology has the potential to save 12 million lives per year globally.”

Scientific American

Researchers at MIT have designed “a wearable ultrasound scanner that could be used at home to detect breast tumors earlier,” reports Simon Makin for Scientific American. “The researchers incorporated the scanner into a flexible, honeycombed 3-D-printed patch that can be fixed into a bra,” explains Makin. “The wearer moves the scanner among six different positions on the breast, where it snaps into place with magnets, allowing reproducible scanning of the whole breast.”

Boston 25 News

Researchers at MIT have developed a wearable ultrasound device that can be used to detect early signs of breast cancer, reports Rachel Keller and Bob Dumas for Boston 25 News. “This technology will be able to let you know if there’s a question mark, if there’s an anomaly, in your breast tissue,” says Prof. Canan Dagdeviren.

STAT

MIT researchers have designed a wearable ultrasound device that attaches to a bra and could be used to detect early-stage breast tumors, reports Lizzy Lawrence for STAT. “I’m hoping to really make it real, and to touch people’s lives,” says Prof. Canan Dagdeviren. “I want to see the impact of my technology not only in the lab, but on society.”

The Telegraph

Prof. Canan Dagdeviren and colleagues at MIT have developed a wearable sensor that could help more easily detect breast cancer. “Dr. Dagdeviren hopes the device will allow for more frequent screening of women who are at high risk of developing breast cancer, such as those who had inherited the BRCA1 and BRCA2 genes, or people who have had cancer previously,” writes Sarah Knapton for The Telegraph.  

Popular Science

Researchers at MIT have developed a “flexible patch that can take ultrasound images comparable to those done by medical centers, but can fit into a bra,” reports Sara Kiley Watson for Popular Science. “The researchers tested their device on a 71-year-old subject with a history of breast cysts, and were able to detect cysts as small as 0.3 centimeters in diameter up to 8 centimeters deep in the tissue, all while maintaining a resolution similar to traditional ultrasounds,” writes Kiley Watson.

HealthDay News

Researchers at MIT have developed a wearable ultrasound patch that could be used to allow women to monitor themselves for early signs of breast cancer, reports Amy Norton for HealthDay. “The hope is to one day use such portable technology to help diagnose and monitor a range of diseases and injuries – in a way that’s more accessible and cheaper than using traditional scanners housed at medical facilities,” explains Norton.

Related Links

Related Topics

Related Articles

More MIT News

Gene Keselman headshot

Faces of MIT: Gene Keselman

At MIT, Keselman is a lecturer, executive director, managing director, and innovator. Additionally, he is a colonel in the Air Force Reserves, board director, and startup leader.

Read full story