Skip to content ↓

Topic

Wireless

Download RSS feed: News Articles / In the Media

Displaying 1 - 15 of 107 news clips related to this topic.
Show:

Scientific American

MIT scientists have developed a miniature antenna that could one day be used to help safely transmit data from within living cells “by resonating with acoustic rather than electromagnetic waves,” reports Andrew Chapman for Scientific American. “A functioning antenna could help scientists power, and communicate with, tiny roving sensors within the cell,” writes Chapman, “helping them better understand these building blocks and perhaps leading to new medical treatments.”

TechCrunch

Researchers at MIT are working on a system that can track the development of Parkinson’s disease by monitoring a person’s gait speed, reports Kyle Wiggers and Devin Coldewey for TechCrunch. “The MIT Parkinson’s-tracking effort aims to help clinicians overcome challenges in treating the estimated 10 million people afflicted by the disease globally,” writes Wiggers and Coldewey.

The Boston Globe

MIT researchers have developed a new in-home device that can help monitor Parkinson’s patients by tracking their gait, reports Hiawatha Bray for The Boston Globe. “We know very little about the brain and its diseases,” says Professor Dina Katabi. “My goal is to develop non-invasive tools that provide new insights about the functioning of the brain and its diseases.”

Popular Science

Popular Science reporter Philip Kiefer writes that MIT researchers have developed an in-home device that could be used to track the progression of symptoms in Parkinson’s patients. “We can’t really ask patients to come to the clinic every day or every week,” explains graduate student Yingcheng Liu. “This technology gives us the possibility to continuously monitor patients, and provide more objective assessments.”

The Washington Post

Washington Post reporter Pranshu Verma writes about how Prof. Dina Katabi and her colleagues developed a new AI tool that could be used to help detect early signs of Parkinson’s by analyzing a patient’s breathing patterns. For diseases like Parkinson’s “one of the biggest challenges is that we need to get to [it] very early on, before the damage has mostly happened in the brain,” said Katabi. “So being able to detect Parkinson’s early is essential.”

Forbes

Forbes contributor Jennifer Kite-Powell spotlights how MIT researchers created a new AI system that analyzes radio waves bouncing off a person while they sleep to monitor breathing patterns and help identify Parkinson’s disease. “The device can also measure how bad the disease has become and could be used to track Parkinson's progression over time,” writes Kite-Powell.

The Boston Globe

A new tool for diagnosing Parkinson’s disease developed by MIT researchers uses an AI system to monitor a person’s breathing patterns during sleep, reports Hiawatha Bray for The Boston Globe. “The system is capable of detecting the chest movements of a sleeping person, even if they’re under a blanket or lying on their side,” writes Bray. “It uses software to filter out all other extraneous information, until only the breathing data remains. Using it for just one night provides enough data for a diagnosis.”

WBUR

Boston Globe reporter Hiawatha Bray speaks with Radio Boston host Tiziana Dearing about how MIT researchers developed an artificial intelligence model that uses a person’s breathing patterns to detect Parkinson’s Disease. The researchers “hope to continue doing this for other diseases like Alzheimer’s and potentially other neurological diseases,” says Bray.

Fierce Biotech

Researchers at MIT have developed an artificial intelligence sensor that can track the progression of Parkinson’s disease in patients based on their breathing while they sleep, reports Conor Hale for Fierce Biotech. “The device emits radio waves and captures their reflection to read small changes in its immediate environment,” writes Hale. “It works like a radar, but in this case, the device senses the rise and fall of a person’s chest.”

Boston.com

MIT researchers have developed a new artificial intelligence system that uses a person’s breathing pattern to help detect Parkinson’s sisease, reports Susannah Sudborough for Boston.com. “The device emits radio signals, analyzes reflections off the surrounding environment, and monitors the person’s breathing patterns without any bodily contact,” writes Sudborough.

Stat

Researchers at MIT and other institutions have developed an artificial intelligence tool that can analyze changes in nighttime breathing to detect and track the progression of Parkinson’s disease, reports Casey Ross for STAT. “The AI was able to accurately flag Parkinson’s using one night of breathing data collected from a belt worn around the abdomen or from a passive monitoring system that tracks breathing using a low-power radio signal,” writes Ross.

Popular Science

Profs. Ruonan Han and Qing Hu speak with Popular Science reporter Rahul Rao about their work with terahertz waves. “There’s a laundry list of potential applications,” says Hu of the promise of terahertz waves.

TechCrunch

TechCrunch reporter Haje Jan Kamps writes that MIT researchers have developed an “electronically steerable terahertz antenna array, which operates like a controllable mirror.” The new device “may enable higher-speed communications and vision systems that can see through foggy or dusty environments.”

NBC Boston

Prof. Muriel Médard speaks with NBC Boston reporter Raul Martinez about 5G technologies and helps demystify the concerns surrounding 5G networks and airline safety.

The Wall Street Journal

In an article for The Wall Street Journal about next generation technologies that can create and quantify personal health data, Laura Cooper spotlights Prof. Dina Katabi’s work developing a noninvasive device that sits in a person’s home and can help track breathing, heart rate, movement, gait, time in bed and the length and quality of sleep. The device “could be used in the homes of seniors and others to help detect early signs of serious medical conditions, and as an alternative to wearables,” writes Cooper.