Skip to content ↓

Topic

Sensors

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 227 news clips related to this topic.
Show:

Somewhere on Earth

Prof. Michael Strano joins “Somewhere on Earth” podcast host Gareth Mitchell to discuss how he and his colleagues developed tiny batteries that could be used to power cell-sized robots. Roughly the thickness of a human hair, the new battery can create a current by capturing oxygen. “I would say we're making the LEGOs, the building blocks that go into robots,” Strano says. “We’re building the parts and it's an exciting time for the field.”

Forbes

After meeting at MIT, alumni Honghao Deng and Jiani Zeng founded Butr, which makes anonymous people-detecting sensors to measure movement inside buildings, reports Zoya Hasan for Forbes. The sensors could help address staffing challenges in senior living communities, and alert staff of falls or other medical issues. 

 

TechCrunch

Researchers at MIT have developed tiny batteries capable of powering cell-sized robots that can “execute tasks as varied as targeting drug delivery inside the human body to checking pipelines for gas leaks,” reports Brian Heater for TechCrunch. “Despite the barely visible size, the researchers say the batteries can generate up to 1 volt, which can be used to power a sensor, circuit or even a moving actuator.”

Scientific American

Researchers at MIT have created a noise-blocking sheet of silkworm silk that could “greatly streamline the pursuit of silence,” reports Andrew Chapman for Scientific American. “The silk sheet, which is enhanced with a special fiber, expands on a technology also found in noise-canceling headphones,” explains Chapman. “These devices create silence by sampling the ambient noise and then emitting sound waves that are out of phase with those in the environment. When the ambient and emitted waves overlap, they cancel each other out.” 

MassLive

Researchers at MIT have developed a fiber capable of suppressing sound that is made up of “silk, canvas and other common materials,” reports Charlie McKenna for MassLive. “The silk is barely thicker than human hair and is made by heating the materials and drawing them into a fiber,” explains McKenna. “Since each material flows at the same temperature, they can be pulled into a fiber while maintaining their structure.” 

CBC News

MIT researchers have developed “an ultra-thin silk fabric embedded with a special piezoelectric fiber that can vibrate to cancel out noise in a room,” reports Bob McDonald for CBC. “The researchers want to further study how changing elements of the fabric — such as the number of piezoelectric fibers and the voltage they apply to it, the direction they're sewn into the fabric, and the size of the pores in the fabric — can improve on their findings,” writes McDonald. 

Interesting Engineering

Interesting Engineering reporter Sujita Sinha spotlights how MIT researchers crafted a special silk fabric capable of blocking sound. “Inside this special material is a fiber that springs to life when an electrical charge is applied,” explains Sinha. “The fabric starts shaking when it hears sound, which helps stop noise in two different ways.”

New Scientist

Prof. Giovanni Traverso and colleagues have developed a new ingestible sensor that could be used to help diagnose gastrointestinal conditions, reports Jeremy Hsu for New Scientist. “Eventually, the futuristic device could provide treatments for gut illnesses through electrical stimulation via additional electrodes embedded in the sensor,” Hsu notes.  

ShareAmerica

ShareAmerica reporter Lauren Monsen spotlights Prof. Dina Katabi for her work in advancing medicine with artificial intelligence. “Katabi develops AI tools to monitor patients’ breathing patterns, hear rate, sleep quality, and movements,” writes Monsen. “This data informs treatment for patients with diseases such as Parkinson’s, Alzheimer’s, Crohn’s, and ALS (amyotrophic lateral sclerosis), as well as Rett syndrome, a rare neurological disorder.”

AuntMinnie.com

Prof. Xuanhe Zhao speaks with Amerigo Allegretto of AuntMinnie.com about his work developing a new ultrasound sticker that can measure the stiffness of internal organs and could one day be used for early detection and diagnosis of disease. “Due to the huge potential of measuring the rigidity of deep internal organs, we believe we can use this to monitor organ health,” Zhao explains.

USA Today

Prof. Nicholas Makris speaks with USA Today reporter Phaedra Trethan about the oceanic challenges that may impact the search for Amelia Earhart and Fred Noonan’s plane. The plane "is lost in the darkens of the ocean,” says Makris. “The sound (from sonar equipment) takes the darkness out, but it’s so far down that, from the surface, it can look like a speck.”

The Washington Post

Alicia Chong Rodriguez SM ’17, SM ’18 founded Bloomer Tech, a health tech startup that aims to improve health care diagnostics for women using medical-grade data to develop new therapies and care models, reports Carol Eisenberg for The Washington Post. Rodriguez and her colleagues "developed, patented and tested flexible washable circuits to turn articles of clothing into devices that can relay reams of information to the wearer’s smartphone,” writes Eisenberg.

Wired

Prof. Canan Dagdeviren and her team have developed a wearable ultrasound patch that can be used to screen for breast cancer at home, reports Grace Browne for Wired. “Dagdeviren wants to give people the opportunity to know what’s happening inside their bodies every day, the same way we check the weather forecast,” writes Browne.

Forbes

Forbes contributor William Haseltine spotlights how MIT researchers developed a biosensor ingestible capsule that can gather and transmit information on a patient’s condition to a physician. Haseltine notes that “aside from respiratory and heart rate monitoring, future applications for the pill could come from alterations in its design, leading to other avenues of health monitoring. These may include digestive health, blood sugar monitoring and cancer cell detection.”