Skip to content ↓

Topic

Research Laboratory of Electronics

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 166 news clips related to this topic.
Show:

Interesting Engineering

Researchers at MIT have successfully captured the first images of individual atoms interacting freely in space, reports Georgina Jedikovska for Interesting Engineering. “The images, which show interactions between free-range particles that had only been theorized until now, will reportedly allow the scientists to directly observe quantum phenomena in real space,” writes Jedikovska.  

Interesting Engineering

MIT researchers have developed a superconducting circuit that can increase the speed of quantum processing, reports Aamir Khollam for Interesting Engineering. “This device is a superconducting circuit designed to produce extremely strong nonlinear interactions between particles of light (photons) and matter (qubits),” explains Khollam. “This breakthrough could make operations up to 10 times faster, bringing fault-tolerant, real-world quantum computing a major step closer.”   

Quantum Campus

Researchers at MIT believe they have demonstrated the strongest non-linear light-matter coupling in a quantum system, reports Bill Bell for Quantum Campus. “Their novel superconducting circuit architecture showed coupling about an order of magnitude stronger than prior demonstrations,” writes Bill. “It could significantly improve the measurements and error corrections needed to increase the accuracy and reliability of quantum computers.” 

Mashable

Researchers at MIT have developed a “small, hopping robot designed to traverse challenging environments,” reports Emmett Smith for Mashable. “The robot utilizes a spring-loaded leg for propulsion and incorporates flapping wing modules for stability and control,” explains Smith. “This design enables movement across diverse surfaces and the ability to carry loads exceeding its own weight.” 

Defense One

Defense One reporter Patrick Tucker writes that MIT researchers have developed “a new way to make large ultrathin infrared sensors that don’t need cryogenic cooling and could radically change night vision for the military or even autonomous vehicles.” Tucker notes: “This research points to a new kind of vision: not just night vision without cooling, but a production method for faster and cheaper development of night vision equipment with more U.S. components.”

Tech Briefs

Graduate student Yi-Hsuan (Nemo) Hsiao and City University of Hong Kong Prof. Pakpong Chirarattananon have developed a “hopping robot that can leap over tall obstacles and jump across slanted or uneven surfaces, while using far less energy than an aerial robot,” writes Andrew Corselli for Tech Briefs Magazine. “One of the biggest challenges is our robot is still connected with a power cable,” explains Hsiao. “I think going into power autonomy — which means we carry a battery and a sensor onboard — will be the next step. And this robot has really opened the opportunities for us to do that.”

Military & Aerospace Electronics

MIT researchers have made a key advance in the creating a practical quantum computer by demonstrating “remote entanglement—an essential step in building distributed quantum networks—by sending photons between two quantum processors,” reports Military & Aerospace Electronics. “This breakthrough lays the groundwork for large-scale quantum computing networks and could extend to other quantum computing platforms and the quantum internet.”

FOX 28

MIT scientists have developed a new programmable fiber that can be stitched into clothing to help monitor the wearer’s health, reports Stephen Beech for FOX 28 News. “The gear has been tested by U.S. Army and Navy personnel during a month-long winter research mission to the Arctic,” Beech notes. 

Dezeen

Dezeen reporter Rima Sabina Aouf spotlights how MIT researchers have created a “thin and flexible fiber computer and woven it into clothes, suggesting a potential alternative to current wearable electronics.” Prof. Yoek Fink explains: "In the not-too-distant future, fiber computers will allow us to run apps and get valuable health care and safety services from simple everyday apparel.” He adds: "The convergence of classical fibers and fabrics with computation and machine learning has only begun.” 

Ars Technica

MIT engineers have manufactured a programmable computer fiber that can be woven into clothing and used to help monitor the wearer’s vital signs, reports Jennifer Ouellette for Ars Technica. “The long-term objective is incorporating fiber computers into apparel that can sense and respond to changes in the surrounding environment and individual physiology,” Ouellette notes. 

New Scientist

New Scientist reporter Alex Wilkins spotlights how MIT researchers have created a “computer that can be stitched into clothes, made from chips that are connected in a thread of copper and elastic fiber.” U.S. Army and Navy members will  be testing the use of the fiber computer to help monitor health conditions and prevent injury during a monthlong mission to the Arctic. Prof. Yoel Fink explains: “We’re getting very close to a point where we could write apps for fabrics and begin to monitor our health and do all kinds of things that a phone, frankly, cannot do.” 

Interesting Engineering

Researchers at MIT have developed a new chip-based system capable of improving “how terahertz (THz) waves pass through silicon chips,” reports Rupendra Brahambhatt for Interesting Engineering. The researchers “applied a principle called matching, which involves reducing the difference between silicon (dielectric constant is 11) and air (dielectric constant is 1) so that more waves can travel through,” writes Brahambhatt. 

The Guardian

In a letter to The Guardian, Research Scientist Florian Metzler, Research Affiliate Matt Lilley and their colleagues highlight the important advancements being made in cold fusion research. “Cold fusion could result in spectacular technologies. But we are convinced that the way forward requires rigorous, open-source scientific investigation, not more claims,” they write. “In many ways, cold fusion’s time has come. Advances in theory and experiment have made the LENR field eminently actionable.” 

Noticias Telemundo

In this interview (in Spanish), graduate students Suhan Kim and Yi-Hsuan (Nemo) Hsiao speak with Telemundo correspondent Miriam Arias about their work developing insect-sized robots to assist with agricultural needs. “There might be one year where you have a lot of bees in the field that help you pollinate everything. Maybe the next year, it might be affected by the temperature or something [and] you just don’t have enough bees to help you do so,” explains Hsiao. 

Tech Briefs

Graduate students Suhan Kim and Yi-Hsuan (Nemo) Hsiao speak with Tech Briefs reporter Andrew Corselli about their work developing insect-sized robots capable of artificial pollination. “Typical drones use electromagnetic motors plus propellers. But, our system is a little different in that we are primarily using an artificial muscle,” explains Kim.