Skip to content ↓

Topic

Research Laboratory of Electronics

Download RSS feed: News Articles / In the Media

Displaying 1 - 15 of 107 news clips related to this topic.
Show:

TechCrunch

TechCrunch reporter Brian Heater spotlights multiple MIT research projects, including MIT Space Exploration Initiative’s TESSERAE, CSAIL’s Robocraft and the recent development of miniature flying robotic drones.

WHDH 7

MIT engineers have created insect-sized robots that can emit light when they fly and could eventually be used to aid search-and-rescue missions, reports WHDH. “Our idea is, if we can send in hundreds or thousands of those tiny flying robots then once they find that survivor, they will shine out light and pass information back and signal people on the outside saying ‘we found someone who’s trapped,'” explains Prof. Kevin Chen.

Popular Science

MIT engineers have developed tiny flying robots that can light up, reports Colleen Hagerty for Popular Science. “If you think of large-scale robots, they can communicate using a lot of different tools—Bluetooth, wireless, all those sorts of things,” says Prof. Kevin Chen. “But for a tiny, power-constrained robot, we are forced to think about new modes of communication.”

Fast Company

MIT researchers developed a suitcase-sized, portable desalination device that can turn salt water into drinking water with the push of a button, reports Elissaveta M. Brandon for Fast Company. Brandon writes that the device could be a “vital tool for remote island communities, seafaring cargo ships, and even refugee camps located near water.”

Motherboard

Motherboard reporter Audrey Carleton writes that MIT researchers have developed a “filter-less portable desalination device that uses an electrical field generated by solar energy to repel charged particles like salt, bacteria, and viruses.” Research Scientist Junghyo Yoon explains that: “All indicators tell us that water scarcity is a growing problem for everyone due to rising sea levels. We don’t hope for a grim future, but we want to help people be prepared for it.” 

The Daily Beast

A new portable, solar-powered desalination device developed by MIT researchers can create potable drinking water with the push of a button, reports Tony Ho Tran for The Daily Beast. “The device doesn’t rely on any filters like traditional desalination machines,” writes Tran. “Instead, it zaps the water with electric currents to remove minerals such as salt particles from the water.”

Inverse

Researchers from MIT have developed a new fabric that can hear and interpret what’s happening on and inside our bodies, reports Elana Spivack for Inverse. Beyond applications for physical health the researchers envision that the fabric could eventually be integrated with “spacecraft skin to listen to [accumulating] space dust, or embedded into buildings to detect cracks or strains,” explains Wei Yan, who helped develop the fabric as an MIT postdoc. “It can even be woven into a smart net to monitor fish in the ocean. It can also facilitate the communications between people who are hard of [hearing].”

WHDH 7

Prof. Yoel Fink speaks with WHDH about his team’s work developing an acoustic fabric that can listen to and record sound, a development inspired by the human ear. "The fabric can be inserted into clothes to monitor heart rate and respiration. It can even help with monitoring unborn babies during pregnancy."

Bloomberg News

Bloomberg News spotlights how MIT researchers have developed a new material that works like a microphone, converting sounds into vibrations and then electrical signals. “The development means the possibility of clothes that act as hearing aids, clothes that answer phone calls, and garments that track heart and breathing rates,” writes Bloomberg News.

Popular Science

Researchers from MIT and the Rhode Island School of Design have developed a wearable fabric microphone that can detect and transmit soundwaves and convert them into electrical signals, reports Shi En Kim for Popular Science. “Computers are going to really become fabrics," says Prof. Yoel Fink. "We’re getting very close.”

The Daily Beast

MIT researchers have created a flexible fiber that can generate electrical impulses that are conveyed to the brain as sound, reports Miriam Fauzia for The Daily Beast. “The researchers see endless possibilities for their smart fabric,” writes Fauzia. “The obvious application is in improving hearing aids, which Fink said have trouble discerning the direction of sound, particularly in noisy environments. But the fabric could also help engineers design wearable fabrics that can measure vital signs, monitor space dust in new kinds of spacecraft, and listen for signs of deterioration in buildings like emerging cracks and strains.”

Bloomberg

Prof. Jesús del Alamo speaks with Bloomberg Radio’s Janet Wu about a new report by MIT researchers that explores how the U.S. can regain leadership in semiconductor manufacturing and production. “Leadership in microelectronics is really critical for economic progress and also security concerns,” says del Alamo.

CNET

A new white paper by MIT researchers underscores the importance of regaining the U.S.’s innovation leadership in the area of semiconductor manufacturing and calls for increased investment at the research level to help advance this field, reports Stephen Shankland for CNET. "The hollowing out of semiconductor manufacturing in the US is compromising our ability to innovate in this space and puts at risk our command of the next technological revolution,” write the report’s authors. “To ensure long-term leadership, leading-edge semiconductor manufacturing in the US must be prioritized and universities activities have to get closer to it."

NBC Boston

Prof. Muriel Médard speaks with NBC Boston reporter Raul Martinez about 5G technologies and helps demystify the concerns surrounding 5G networks and airline safety.

Popular Science

Popular Science reporter Rahul Rao writes that researchers from MIT and Harvard have whipped up quantum tornadoes, “the latest demonstration of quantum mechanics—the strange code of laws that governs the universe at its finest, subatomic scales.”