Skip to content ↓

Topic

Nanoscience and nanotechnology

Download RSS feed: News Articles / In the Media

Displaying 1 - 15 of 305 news clips related to this topic.
Show:

Mashable

Ubiquitous Energy, an MIT startup, has created a transparent photovoltaic glass coating, called UE Power, that can turn any surface into a tiny solar panel, reports Teodosia Dobriyanova for Mashable. “The company, however, is prioritizing the use of UE Power on windows in an attempt to help buildings reduce their colossal climate footprint,” writes Dobriyanova.

The Boston Globe

Ginkgo Bioworks, a biotech company founded by Jason Kelly BS ’03, PhD ’08, Reshma Shetty PhD ‘08, Barry Canton PhD ’08, Austin Che PhD ’08 and Professor Tom Knight, is working to develop synthetic fragrances, reports Scott Kirsner for The Boston Globe.

Boston 25 News

Researchers at MIT have developed a new nanoparticle sensor that can detect cancerous proteins through a simple urine test. “The researchers designed the tests to be done on a strip of paper, similar to the at-home COVID tests everyone became familiar with during the pandemic,” writes Lambert. “They hope to make it as affordable and accessible to as many patients as possible.”

New Scientist

Researchers at the McGovern and Broad Institutes have developed a bacterial "nanosyringe" that can inject large proteins into specific cells in the body, which could lead to safer and more effective treatments for a variety of conditions, including cancer, reports Michael Le Page for New Scientist. “The fact that this can load a diversity of different payloads of different sizes makes it unique amongst protein delivery devices,” says graduate student Joseph Kreitz.

Scientific American

Ingrid Wickelgren at Scientific American highlights a new study from researchers at the McGovern and Broad Institutes, in which they used a bacterial ‘nanosyringe’ to inject large proteins into human cells. “The syringe technology also holds promise for treating cancer because it can be engineered to attach to receptors on certain cancer cells,” writes Wickelgren.     

NPR

Graduate student Crystal Owens speaks with NPR correspondent Miles Parks about her study which sought to find out the perfect ratio for breaking apart an Oreo cookie. “What we actually found was that all of the results were basically the same,” says Owens. “You can’t do it wrong because there’s no way to do it right.”

The Wall Street Journal

Wall Street Journal reporter Aylin Woodward writes about how graduate student Crystal Owens and undergraduate Max Fan set out to solve a cookie conundrum: whether there was a way to twist apart an Oreo and have the filling stick to both wafers. Woodward writes that for Owens, the research “was a fun, easy way to make her regular physics and engineering work more accessible to the general public.”

Popular Science

MIT engineers have developed a new technique that enables bug-sized aerial robots to handle a sizeable amount of damage and still fly, reports Andrew Paul for Popular Science. “The new repair techniques could come in handy when using flying robots for search-and-rescue missions in difficult environments like dense forests or collapsed buildings,” writes Paul.

Wired

Researchers at MIT have discovered what makes ancient Roman concrete “exponentially more durable than modern concrete,” reports Jim Morrison for Wired. “Creating a modern equivalent that lasts longer than existing materials could reduce climate emissions and become a key component of resilient infrastructure,” writes Morrison.

Boston Magazine

MIT researchers are developing targeted drug delivery through the use of nanoparticles to aid in cancer treatment, reports Simone Migliori for Boston Magazine. “Designed to circulate through the bloodstream, these small but mighty travelers [nanoparticles] can deliver a chemotherapy drug directly to a target cancer cell without disturbing any healthy cells along the way,” writes Migliori. “In doing so, patients may be able to avoid some of the worst side effects of chemotherapy drugs while still effectively treating their cancer.”

Scientific American

MIT researchers have discovered that ancient Romans used calcium-rich mineral deposits to build durable infrastructure, reports Daniel Cusick for Scientific American. This “discovery could have implications for reducing carbon emissions and creating modern climate-resilient infrastructure,” writes Cusick.

NPR

Prof. Admir Masic speaks with NPR host Scott Simon about the concrete blend used by the ancient Romans to build long standing infrastructures. “We found that there are key ingredients in ancient Roman concrete that lead to a really outstanding functionality property in the ancient mortar, which is self-healing,” explains Masic.

Reuters

Reuters reporter Will Dunham writes that a new study by MIT researchers uncovers the secret ingredient that made ancient Roman concrete so durable and could “pave the way for the modern use of a replicated version of this ancient marvel.” Prof. Admir Masic explains that the findings are “an important next step in improving the sustainability of modern concretes through a Roman-inspired strategy.”

CNN

MIT researchers have discovered that ancient Romans used lime clasts when manufacturing concrete, giving the material self-healing properties, reports Katie Hunt for CNN. "Concrete allowed the Romans to have an architectural revolution," explains Prof. Admir Masic. "Romans were able to create and turn the cities into something that is extraordinary and beautiful to live in. And that revolution basically changed completely the way humans live."

Science

Scientists from MIT and other institutions have uncovered an ingredient called quicklime used in ancient Roman techniques for manufacturing concrete that may have given the material self-healing properties, reports Jacklin Kwan for Science Magazine. When the researchers made their own Roman concrete and tested to see how it handled cracks, “the lime lumps dissolved and recrystallized, effectively filling in the cracks and keeping the concrete strong,” Kwan explains.