Skip to content ↓

Topic

Nanoscience and nanotechnology

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 333 news clips related to this topic.
Show:

New Scientist

A new study by MIT engineers finds that heating metals can sometimes make them stronger, a “surprising phenomenon [that] could lead to a better understanding of important industrial processes and make for tougher aircraft,” reports Karmela Padavic-Callaghan for New Scientist. “It was just so unexpected or backwards of what you might conventionally see,” explains graduate student Ian Dowding. 

Popular Mechanics

MIT physicists have “successfully placed two dysprosium atoms only 50 nanometers apart—10 times closer than previous studies—using ‘optical tweezers,’” reports Darren Orf for Popular Mechanics. Utilizing this technique can allow scientists to “better understand quantum phenomena such as superconductivity and superradiance,” explains Orf. 

The Independent

MIT researchers have uncovered the “photomolecular effect,” a process “that demonstrates for the first time that water can evaporate with no source of heat using light alone,” reports Anthony Cuthbertson for The Independent. The “discovery could impact everything from climate change calculations to weather forecasts, while also opening up new practical applications for things like energy and clean water production,” writes Cuthbertson.

New Atlas

Researchers at MIT have discovered that “light in the visible spectrum is enough to knock water molecules loose at the surface where it meets air and send them floating away,” reports Michael Franco for New Atlas. “While the distinction between light-caused evaporation and heat-caused evaporation might not seem like a big one, the researchers say it could not only have a big impact on the way future evaporative projects are executed, but that it could also explain a long-standing discrepancy involving clouds,” writes Franco.

Interesting Engineering

Interesting Engineering reporter Rizwan Choudhury spotlights a new study by MIT researchers that finds light can cause evaporation of water from a surface without the need for heat. The photomolecular effect “presents exciting practical possibilities,” writes Choudhury. “Solar desalination systems and industrial drying processes are prime candidates for harnessing this effect. Since drying consumes significant industrial energy, optimizing this process using light holds immense promise.”

MIT Technology Review

Writing for MIT Technology Review, Georgina Gustin chronicles the research journey of Polina Anikeeva, the MIT scientist and engineer who developed flexible brain probes to stimulate neurons and potentially treat neurological disorders. In 2017, Anikeeva became fascinated by the hypothesis that Parkinson’s might be linked to pathogens in the digestive system. Today she and her team use specialized devices to explore the brain-gut connection. “This is a new frontier,” Anikeeva says. 

The Ringer

Prof. Gregory Rutledge speaks with The Ringer reporter Claire McNear about the science behind nanofibers and whether it's possible to create ultrathin and ultrastrong nanofibers that are invisible to the human eye, as shown in the science fiction series “3 Body Problem.” Rutledge explains that: “Given that a human hair is about 50 micrometers in diameter, a fiber 100 times smaller would be about 500 nanometers in diameter. Such fibers are routinely made by electrospinning, as well as by a couple of other technologies. Metal wires can also be drawn that small.”

TechCrunch

TechCrunch reporter Haje Jan Kamps spotlights AgZen, an MIT startup that has developed a new tool that optimizes the use of pesticides to avoid over application. “The real winner in all of this may prove to be public health and the environment,” writes Jan Kamps. “By reducing foliar pesticide usage by 30% to 50%, AgZen’s technology might help mitigate [environmental] impacts, aligning with the critical need for improved spray efficiency highlighted in recent reports.”

The Boston Globe

A more than $40 million investment to add advanced nano-fabrication equipment and capabilities to MIT.nano will significantly expand the center’s nanofabrication capabilities, reports Jon Chesto for The Boston Globe. The new equipment, which will also be available to scientists outside MIT, will allow “startups and students access to wafer-making equipment used by larger companies. These tools will allow its researchers to make prototypes of an array of microelectronic devices.”

Salon

Researchers from MIT have developed, “nanoelectronics they hope can one day enter the brain and treat conditions like Alzheimer’s by monitoring some of these brain patterns,” reports Elizabeth Hlavinka for Salon. “Their device, which they call Cell Rover, serves as a sort of antenna that can help external devices monitor cells.”

Tech Briefs

MIT researchers have developed a, “new laser-based technique that could speed up the discovery of promising metamaterials for real-world applications,” reports Andrew Corselli for Tech Briefs. The technique “offers a safe, reliable, and high-throughput way to dynamically characterize microscale metamaterials, for the first time,” reports Corselli.

Nature

Nature reporter Neil Savage speaks with former members of Prof. Moungi Bawendi’s research group about their work with Bawendi on synthesizing quantum dots. Manoj Nirmal PhD '96 recalls how, “what I was really intrigued and fascinated by was, it was very different than anything else that was happening in the [chemistry] department.” Christopher Murray PhD '95 rejoiced in the Nobel Prize announcement, saying, “It’s extremely exciting to see that what [Moungi] built is recognized as part of the Nobel prize.”

CBC News

Prof. Moungi Bawendi, recipient of the 2023 Nobel Prize in Chemistry, speaks with CBC Quirks & Quacks host Bob McDonald about his work in quantum dots and nanotechnology. “I really want to stress that the beginning of this field, we were interested in this because it was a brand new material, it was a size region that no one had investigated before,” says Bawendi. “This was before people talked about nanoscience and nanotechnology, we were just very curious how the properties evolved from the molecular properties… to the bulk properties.”

AFP

Prof. Moungi Bawendi shares his thoughts at an MIT press conference after being named a recipient of the 2023 Nobel Prize in Chemistry, reports the AFP. “None of us who started this field could have predicted 30 years later, it would be where we are today,” says Bawendi. “And you know it’s just amazing to me. If you have really great people working on a brand new field with brand new materials, innovation comes out in directions that you can’t predict.”

The Wall Street Journal

Prof. Moungi Bawendi has been named a recipient of the 2023 Nobel Prize in Chemistry for his work and contributions to the field of quantum dots and nanotechnology, reports Brianna Abbott for The Wall Street Journal. “To understand the physics, which was the motivation, we had to create the material,” says Bawendi. “I would never have thought that you could make them at such a large scale and that they would actually make a difference in the consumer area.”