Skip to content ↓

Topic

Medical devices

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 86 news clips related to this topic.
Show:

STAT

STAT reporter Annalisa Merelli writes that the 2023 Lasker Award has been given to Prof. James Fujimoto, research affiliate Eric Swanson SM ’84 and David Huang PhD ’93 for their work advancing the diagnosis of eye disease. Fujimoto, Swanson and Huang developed “optical coherence tomography (OCT) — the first noninvasive technology allowing doctors to see high-resolution images of the retina.”

The New York Times

Prof. James Fujimoto, research affiliate Eric Swanson SM ’84 and David Huang PhD ’93 have won a Lasker Award for their work inventing optical coherence tomography, which can “detect conditions like macular degeneration and diabetic retinopathy earlier than previous methods, preventing blindness,” reports Noah Weiland and Cade Metz for The New York Times. “O.C.T. now is commonly used in ophthalmology offices, where the patient simply rests a chin and forehead against an instrument for a brief scan,” write Weiland and Metz. “The method, invented in 1991, offers a staggering amount of detail about the retina.”

The Boston Globe

Prof. James Fujimoto, research affiliate Eric Swanson SM ’84 and David Huang PhD ’93 have been honored with the Lasker Award for their work for their work inventing “imaging technology that revolutionized how ophthalmologists diagnose diseases of the eye," reports Jonathan Saltzman for The Boston Globe. The scientists were recognized for developing “optical coherence tomography, or OCT, the first technology that enabled doctors to see a two- and three-dimensional cross-sectional image of the retina,” Saltzman explains. “This painless scan takes less than 10 minutes, and is now the standard of care for diagnosing retina diseases.”

7 News

7 News spotlights how MIT researchers have developed a new implantable device that could provide diabetes patients with insulin without using injections. “What we’ve been able to show is that with a minimally invasive implant that is sitting just under the skin, we’ve actually been able to sort of achieve a diabetic reversal,” explains Research Scientist Siddharth Krishnan.

Gizmodo

Gizmodo reporter Ed Cara writes that MIT researchers have developed a new implantable device that can produce its own supply of insulin for up to a month. The team envisions that the device could “eventually be used for other medical conditions dependent on a regular supply of externally produced proteins, such as certain forms of anemia treated with erythropoietin,” writes Cara.

The Daily Beast

MIT researchers have developed a new implant that in the future could be used to deliver insulin to patients for up to a month, potentially enabling patients to control diabetes without injections, reports Tony Ho Tran for the Daily Beast. In the future, the researchers hope to “develop a device for humans that would be roughly the size of a stick of gum,” writes Tran. “The implant could also be used to deliver things like drugs or proteins to help treat other diseases in humans as well.”

Popular Science

Researchers at MIT and elsewhere have developed a medical device that uses AI to evade scar tissue build up, reports Andrew Paul for Popular Science. “The technology’s secret weapon is its conductive, porous membrane capable of detecting when it is becoming blocked by scar tissue,” writes Paul. 

CNN

Callie Gade and Nate Bonham of CNN’s Discovery Daily Podcast spotlight how researchers from MIT developed a 3D printed replica of the human heart that can help doctors customize treatments for patients before conducting open heart surgery or other intrusive procedures. “These more patient-specific heart replicas can help future researchers develop and identify treatments for people with unique health problems,” says Gade.

NBC

Dr. Akshay Syal, a medical fellow for NBC News, discusses how MIT researchers have developed a new technique to 3D print custom replicas of the human heart.

Bloomberg

Bloomberg reporter Tanaz Meghjani writes that MIT researchers created a new system to 3D print a customized replica of the human heart, which could help improve replacement valve procedures. The new system “mimics blood flow and pressure in individual diseased hearts, suggesting a way to predict the effects of various replacements and select the best fit, avoiding potential leakage and failure,” Meghjani writes.

WBUR

MIT engineers have developed a new technique for 3D printing a soft, flexible, custom-designed replica of a patient’s heart, report Gabrielle Emanuel and Amy Sokolow for WBUR. The goal of the research is to “provide realistic models so that doctors, researchers and medical device manufacturers can use them in testing therapies for different types of heart disease,” Emanuel and Sokolow explain.

Scientific American

MIT scientists have developed a miniature antenna that could one day be used to help safely transmit data from within living cells “by resonating with acoustic rather than electromagnetic waves,” reports Andrew Chapman for Scientific American. “A functioning antenna could help scientists power, and communicate with, tiny roving sensors within the cell,” writes Chapman, “helping them better understand these building blocks and perhaps leading to new medical treatments.”

Popular Science

Popular Science reporter Helen Bradshaw writes that MIT researchers have improved the energy capacity of nonrechargeable batteries, the batteries used in pacemakers and other implantable medical devices, by employing a new type of electrolyte. “Expanding the life of primary batteries may also make them sustainable contenders,” writes Bradshaw. “Fewer batteries will have to be used in pacemakers as their lifespans increase, decreasing overall battery waste in addition to reducing the number of battery replacement surgeries needed.”

Time Magazine

A stamp-sized reusable ultrasound sticker developed by researchers in Prof. Xuanhe Zhao’s research group has been named one of the best inventions of 2022 by TIME. “Unlike stretchy existing ultrasound wearables, which sometimes produce distorted images, the new device’s stiff transducer array can record high-resolution video of deep internal organs (e.g. heart, lungs) over a two-day period,” writes Alison Van Houten.

Associated Press

Principal research scientist Leo Anthony Celi speaks with Associated Press reporter Maddie Burakoff about how pulse oximeters can provide inaccurate readings in patients of color. Celi highlights how oxygen levels can also be measured by drawing blood out of an artery in the wrist, the “gold standard” for accuracy, but a method that is a a bit trickier and more painful.