Skip to content ↓

Topic

Medical devices

Download RSS feed: News Articles / In the Media

Displaying 1 - 15 of 75 news clips related to this topic.
Show:

Scientific American

MIT scientists have developed a miniature antenna that could one day be used to help safely transmit data from within living cells “by resonating with acoustic rather than electromagnetic waves,” reports Andrew Chapman for Scientific American. “A functioning antenna could help scientists power, and communicate with, tiny roving sensors within the cell,” writes Chapman, “helping them better understand these building blocks and perhaps leading to new medical treatments.”

Popular Science

Popular Science reporter Helen Bradshaw writes that MIT researchers have improved the energy capacity of nonrechargeable batteries, the batteries used in pacemakers and other implantable medical devices, by employing a new type of electrolyte. “Expanding the life of primary batteries may also make them sustainable contenders,” writes Bradshaw. “Fewer batteries will have to be used in pacemakers as their lifespans increase, decreasing overall battery waste in addition to reducing the number of battery replacement surgeries needed.”

Time Magazine

A stamp-sized reusable ultrasound sticker developed by researchers in Prof. Xuanhe Zhao’s research group has been named one of the best inventions of 2022 by TIME. “Unlike stretchy existing ultrasound wearables, which sometimes produce distorted images, the new device’s stiff transducer array can record high-resolution video of deep internal organs (e.g. heart, lungs) over a two-day period,” writes Alison Van Houten.

Associated Press

Principal research scientist Leo Anthony Celi speaks with Associated Press reporter Maddie Burakoff about how pulse oximeters can provide inaccurate readings in patients of color. Celi highlights how oxygen levels can also be measured by drawing blood out of an artery in the wrist, the “gold standard” for accuracy, but a method that is a a bit trickier and more painful. 

Forbes

Forbes contributor Marija Butkovic spotlights Gloria Ro Kolb ’94, the founder of medical device company Elidah, which is developing “an external, home-use treatment for female urinary incontinence.” 

The Washington Post

Washington Post reporter Pranshu Verma writes about how Prof. Dina Katabi and her colleagues developed a new AI tool that could be used to help detect early signs of Parkinson’s by analyzing a patient’s breathing patterns. For diseases like Parkinson’s “one of the biggest challenges is that we need to get to [it] very early on, before the damage has mostly happened in the brain,” said Katabi. “So being able to detect Parkinson’s early is essential.”

Forbes

Forbes contributor Jennifer Kite-Powell spotlights how MIT researchers created a new AI system that analyzes radio waves bouncing off a person while they sleep to monitor breathing patterns and help identify Parkinson’s disease. “The device can also measure how bad the disease has become and could be used to track Parkinson's progression over time,” writes Kite-Powell.

The Boston Globe

A new tool for diagnosing Parkinson’s disease developed by MIT researchers uses an AI system to monitor a person’s breathing patterns during sleep, reports Hiawatha Bray for The Boston Globe. “The system is capable of detecting the chest movements of a sleeping person, even if they’re under a blanket or lying on their side,” writes Bray. “It uses software to filter out all other extraneous information, until only the breathing data remains. Using it for just one night provides enough data for a diagnosis.”

WBUR

Boston Globe reporter Hiawatha Bray speaks with Radio Boston host Tiziana Dearing about how MIT researchers developed an artificial intelligence model that uses a person’s breathing patterns to detect Parkinson’s Disease. The researchers “hope to continue doing this for other diseases like Alzheimer’s and potentially other neurological diseases,” says Bray.

Fierce Biotech

Researchers at MIT have developed an artificial intelligence sensor that can track the progression of Parkinson’s disease in patients based on their breathing while they sleep, reports Conor Hale for Fierce Biotech. “The device emits radio waves and captures their reflection to read small changes in its immediate environment,” writes Hale. “It works like a radar, but in this case, the device senses the rise and fall of a person’s chest.”

Boston.com

MIT researchers have developed a new artificial intelligence system that uses a person’s breathing pattern to help detect Parkinson’s sisease, reports Susannah Sudborough for Boston.com. “The device emits radio signals, analyzes reflections off the surrounding environment, and monitors the person’s breathing patterns without any bodily contact,” writes Sudborough.

Stat

Researchers at MIT and other institutions have developed an artificial intelligence tool that can analyze changes in nighttime breathing to detect and track the progression of Parkinson’s disease, reports Casey Ross for STAT. “The AI was able to accurately flag Parkinson’s using one night of breathing data collected from a belt worn around the abdomen or from a passive monitoring system that tracks breathing using a low-power radio signal,” writes Ross.

Stat

STAT reporter Edward Chen spotlights how MIT researchers developed a new ultrasound adhesive that can stick to skin for up to 48 hours, allowing for continuous monitoring of internal organs. “It’s a very impressive new frontier about how we can use ultrasound imaging continuously to assess multiple organs, organ systems,” said Eric Topol, the founder and director of the Scripps Research Translational Institute. “48 hours of continuous imaging, you’d have to lock somebody up in a hospital, put transducers on them. This is amazing, from that respect.”

Smithsonian Magazine

MIT researchers have developed an adhesive ultrasound patch that can continuously image the inner workings of the body for up to 48 hours, reports Sarah Kuta for Smithsonian Magazine. ““We believe we’ve opened a new era of wearable imaging,” says Prof. Xuanhe Zhao. “With a few patches on your body, you could see your internal organs.”

The Washington Post

Prof. Yoel Fink speaks with Washington Post reporter Pranshu Verma about the growing field of smart textiles and his work creating fabrics embedded with computational power. Fink and his colleagues “have created fibers with hundreds of silicon microchips to transmit digital signals — essential if clothes are to automatically track things like heart rate or foot swelling. These fibers are small enough to pass through a needle that can be sown into fabric and washed at least 10 times.”