• Graphic: Christine Daniloff

    Full Screen
  • Assistant professor of physics Marin Soljačić

    Assistant professor of physics Marin Soljačić

    Photo courtesy MacArthur Foundation

    Full Screen

Toward more efficient wireless power delivery

Latest research shows that efficiency improves when multiple devices are charged at once.

In 2007, MIT researchers announced that they had discovered a novel way of transmitting electricity without the use of wires. Now, the researchers have demonstrated that the system’s efficiency at transmitting energy improves significantly when it is used to charge multiple devices at the same time.

The new work, reported in a paper in Applied Physics Letters earlier this year, has also demonstrated a system much closer to one that could be used to power typical consumer electronic devices. In the original proof-of-concept in 2007, both the transmitter and receiver consisted of coils that were about two feet across. These two units were placed more than six feet apart and were used to light a 60-watt bulb — even with people sitting in between. But the new system uses a slightly larger transmitter, with receivers that are only about a foot across – moving closer to a size that could eventually be built into a PC or a television set. The transmitting coil could be built into a wall or ceiling, the researchers say, and the transfer of power has been shown to work over distances comparable to the size of an ordinary room.

André Kurs, a doctoral student in MIT’s Department of Physics and the lead author of the recent paper, says this reduction in size of the receiving coil is an ongoing process. With some more work on further reducing the coil’s diameter and thickness, “we could embed it in a portable device,” he says.

The basic underlying principle for transmitting power wirelessly goes back more than a century to the work of Nikola Tesla and other pioneers of electricity, but the MIT team invented a way of making the process far more efficient and practical.

The system works by creating a strong electromagnetic resonance between the sending and receiving coils — similar to the way a tuning fork can start vibrating when exposed to a sound of exactly the right frequency, or the way a radio antenna can be tuned to just the frequency of a single station out of the hundreds that are simultaneously broadcasting their signals. In this case, the magnetic resonance between the two coils is unaffected by objects in between the coils, and by the same token objects between the coils — including people — are not affected by the magnetic fields.

The key to that advance — that is, the ability to transmit useful amounts of power using coils of a reasonable size — was found in 2005 by MIT assistant professor of physics Marin Soljačić, who developed the idea along with Kurs, students Aristeidis Karalis SM ’03 ScD ’08 (now a postdoctoral researcher) and Robert Moffatt ’09, and physics professors Peter Fisher and John Joannopoulos.

Although predicted by theory, the increase in efficiency when powering two devices at the same time had not been previously demonstrated in experiments. The team that carried out the recent work — Kurs, Moffat and Soljačić — found that when powering two devices at once, which individually could achieve less than 20 percent efficiency in power transfer, the combined efficiency climbed to more than 30 percent. The two receiving coils resonate with each other as well as with the transmitting coil, and help to reinforce the strength of the magnetic field. Kurs says that the efficiency should continue to rise as more devices are added, climbing toward a theoretical limit of 100 percent. The research has been funded by the NSF, the Army Research Office, DARPA, and a grant from 3M.

The amount of power transmitted in the latest experiment was on the order of 100 watts, but Kurs says that is only limited by the amplifier used for the transmitting coil, and can easily be increased. “It could be several hundred watts, or a kilowatt,” he says — enough to power several typical household devices at once, such as lamps, computers or television sets. “You could feed power to a medium-sized room, and power a dozen devices,” he says.

The researchers set up a company in 2007, called WiTricity, to develop the invention and eventually bring it to market. Most of the Watertown-based company’s principals and board of advisors are MIT professors, students, or alumnae. The company originally estimated it would take several years to develop a commercial product, and have “been making good progress. I think it’s reasonably close,” says Kurs, who works at the company while completing his doctorate. No further breakthroughs are required, the researchers say, just continued engineering work to find the optimum design of the coils and the electrical control systems.

In addition to working on reducing the size of the receiving coils, the researchers are also trying to improve the system for tuning the devices to achieve maximum efficiency. In the laboratory tests, they spent considerable time manually tuning each part of the system, but for a practical consumer product this process will have to be fully automated. “It does get a little harder to tune multiple devices,” Kurs says.

A number of other companies have independently jumped on the bandwagon and begun to develop similar wireless power systems, including large companies like microchip maker Intel and electronics giant Sony. “Quite a few companies have reproduced the original results,” Kurs says.

And Tesla, whom the researchers acknowledge in the footnotes to their papers, would no doubt be pleased by the progress. “He did have the notion,” Kurs says, “but in practice it’s a hard thing to make work. You need a good model of how your coupling varies with distance and how to minimize the losses in the system, and people didn’t have a good understanding of it at the time.”


Topics: Electrical engineering and electronics, Energy, Physics, Wireless



As you can see by my "name", I am a Licensed Amateur Radio Operator. My concerns with this technology resides in its ability to transfer energy without affecting other forms of information transfer in the same realm as is being used by other "services".

Please keep in mind that the available spectrum is finite, and only one service can (with today's known technology) utilize one portion of the spectrum at a time, and not deviate or cause interference to other services.

Well, what if there is interference between the frequencies when the electricity is being transmitted from A->B. The connectivity would be partially block and not receive the full amount of energy, no?

the next decade may not have batteries, every portable device have only a receiver to get power

It's so good!

I had read the research paper related to this topic and have many doubts like the one noted below:

The power transfer from transmitter to the receiver takes place by magnetic coupling. What happens if the "receiver" coil is supplied with RF power? Will it be captured by the Transmitter coil and damage the "Transmitter"?

Let me know how to contact the authors?

I wonder if there isn't an issue of symmetry. The coils themselves are symmetric, they have an axis of symmetry and also a plane of symmetry. And so it seems to follow that the fields produce by such a coil would also be necessarily symmetric.

And so my hunch is that these coils would be better at charging devices in pairs, placed symmetrically on either side of that plane of the coil.

It might also be possible to set up boundary conditions so that the fields on one side are reflected so that the charging device was its own "pair".

Are they testing the effects that amount of electromagnetic fields may cause to living beings?

And interference problems are being tested, as well? Nowadays even my mouse interferes with my router sometimes, what is pretty bad (ok, things only get bad with one router, two wireless computers and the mouse in a very small range, but still...)

Nevertheless, I think that is just AWESOME. I mean, really, I am always losing cables, and there are parts of my home where I can almost lose things in the mild of cables! I'd love a wireless powered world, really

It is an interesting phenomenon.I hope this technology will be developed quickly.

Will the frequencies between the sender and receiver affect the transmitted?

Hey VU2ITI! If you want to contact any of the names in the paper, try looking them up in the MIT People Directory


Good luck!

i think distance between the transmitter n reciever is a big hurdle towards its development

...how hard would it be to integrate this with electric cars. See if we have transmitters at a specific distance interval off the side of the roadway I see a potential for smaller lithium ion stores in electric cars (less cost to market) that are constantly recharged by the road (more convenient than refuel stations). Or do I dream too much? Then to get this energy I propose a geothermal setup about Yellowstone since the History Channel seems to think its about too hot to stay put for very long. So that's almost free energy and a tricked-out, minimalistic electric car approach. Am I on the right page here?

I also wonder how this might affect RFID implements in the future.

now a days i concentrated on witricity.. so i have many doubts. please any one classify my doubts here.. current is defined as flow of electric charge but in witricity how can we get the current without flow of charges.. if it possible the air charge particles are include or not..

Back to the top