Skip to content ↓

Topic

Space

Download RSS feed: News Articles / In the Media / Audio

Displaying 61 - 75 of 734 news clips related to this topic.
Show:

USA Today

MIT scientists have solved a decades old mystery by demonstrating impact vaporization is the primary cause of the moon’s thin atmosphere, reports Eric Lagatta for USA Today.  The findings, “have implications far beyond determining the moon's atmospheric origins,” writes Lagatta. “In fact, it's not unthinkable that similar processes could potentially be taking place at other celestial bodies in the solar system.”

National Geographic

By analyzing isotopes of potassium and rubidium in the lunar soil, Prof. Nicole Nie and her team have demonstrated that micrometeorite impacts are the main cause of the moon’s thin atmosphere, reports Isabel Swafford for National Geographic. “Understanding the space environments of different planetary bodies is essential for planning future missions and exploring the broader context of space weathering,” says Nie.

Newsweek

Newsweek reporter Jess Thomson spotlights, Prof. Nicole Nie’s research uncovering the origins of the moon’s thin atmosphere. “The researchers described how lunar samples from the Apollo missions revealed that meteorites of varying sizes have constantly hit the moon's surface, vaporizing atoms in the soil and kicking them up into the atmosphere,” writes Thomson. “The constant hitting of the moon replenishes any gases lost to space.” 

Reuters

By analyzing lunar soil samples, MIT scientists have found that the moon’s thin atmosphere was created by meteorite impacts over billions of years, reports Will Dunham for Reuters. “Many important questions about the lunar atmosphere remain unanswered,” explains Prof. Nicole Nie. “We are now able to address some of these questions due to advancements in technology.” 

The Guardian

MIT scientists analyzed lunar soil samples and discovered that meteorite impacts likely created the moon’s thin atmosphere, reports Nicola Davis for The Guardian. “Our findings provide a clearer picture of how the moon’s surface and atmosphere interact over long timescales, [and] enhance our understanding of space weathering processes,” explains Prof. Nicole Nie. 

NBC Boston

The final round of the Zero Robotics competition at the MIT Media Lab featured high school students from around the country facing off in a programming challenge using the SPHERES satellites aboard the International Space Station, reports Glenn Jones for NBC Boston. The event “welcomed about 70 middle schoolers from diverse backgrounds to participant in the finals of a robotics competition that featured live dialogue with astronauts on the International Space Station.”

Scientific American

Visiting Scientist Ariel Ekblaw speaks with Scientific American’s Andrew Chapman about a microgravity water cooker called the H0TP0T, part of a mock space habitat set to open in Boston in early August. For the project “Ekblaw and a colleague interviewed nearly two dozen astronauts—who often mentioned better cooking options and tastier food as important ways to improve their well-being,” Chapman explains.

CNN

CNN’s Ashley Strickland reports on the discovery of an exoplanet on the path to becoming a “hot Jupiter,” providing clues about the evolution of these massive Jupiter-like planets closely orbiting their host stars. As Prof. Sarah Millholland explains: “This system highlights how incredibly diverse exoplanets can be. They are mysterious other worlds that can have wild orbits that tell a story of how they got that way and where they’re going.”

Astronomy

Prof. Richard Binzel organized a centennial celebration for the Johnstown meteorite, which was seen crashing into Earth on July 6, 1924 in Weld County, Colorado, and later “became a link to understanding a whole class of meteorites,” reports Elizabeth Gamillo for Astronomy. “Binzel describes the Johnstown rock not as the meteorite that launched a thousand ships, but one that instead launched one major mission to the asteroid belt,” writes Gamillo. 

Newsweek

MIT scientists have found that lakes and seas made of methane may have shaped Titan’s shores, writes Jess Thomson for Newsweek. “This discovery could allow astronomers to learn even more about the conditions on Titan,” writes Thomson. “Knowing that waves carved out the coast enables them to predict how fast and strong the winds on the moon are and from which direction they blow.” 

Gizmodo

Gizmodo reporter Passant Rabie spotlights new research by MIT geologists that finds waves of methane on Titan likely eroded and shaped the moon’s coastlines. “If we could stand at the edge of one of Titan’s seas, we might see waves of liquid methane and ethane lapping on the shore and crashing on the coasts during storms,” explains Prof. Taylor Perron. “And they would be capable of eroding the material that the coast is made of.” 

The Boston Globe

The MIT Haystack Observatory held its first open house since the Covid-19 pandemic, during which the general public was invited into the facility and offered a hands-on look at the work observatory scientists are conducting to investigate complex questions about our universe," writes Ava Berger for The Boston Globe. “It’s fascinating what is going on not that far away from where you were living your daily life,” said Sarah Erwin, an open house attendee. “People are actually grappling with what is happening in the universe.” 

New Scientist

Prof. Netta Engelhardt talks to New Scientist’s Thomas Lawton about the possibility of singularities existing outside black holes. Theorists can now probe singularities from a deeper perspective, using insights into the possible quantum foundations of gravity. This new approach “flips the script” on how we think about singularities, says Engelhardt.

NBC Boston

NBC Boston reporter Matt Fortin visits the lab of Prof. Julien de Wit to learn more about his work discovering two new planets, a puffy, Jupiter-sized planet located over 1,000 light years away that has the consistency of cotton candy and an Earth-sized planet that may lack an atmosphere. “Through studying other atmospheres we get to improve our understanding of our own climate,” de Wit explains. “It’s like a sensitive mirror that helps us reflect back on us, so it’s all these different vantage points that we are gaining. That’s what exoplanetary science gives us.”

WGBH

Prof. Anna Frebel joins Arun Rath of WGBH’s All Things Considered to discuss her recent discovery of some of the universe’s oldest stars, an out-of-this-world identification made the help of MIT undergraduates Hillary Andales, Ananda Santos and Casey Fienberg. “When you meet someone new, you want to know what their name is, how old they are, maybe where they live and what they do, right?” says Frebel. “We do the same with all the astronomical objects in the sky.”