Skip to content ↓

Topic

National Science Foundation (NSF)

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 662 news clips related to this topic.
Show:

Tech Briefs

Graduate student Chung-Tao (Josh) Chou speaks with Tech Briefs reporter Andrew Corselli about his work developing a magnetic transistor that could lead to more energy-efficient circuits. “People have known about magnets for thousands of years, but there are very limited ways to incorporate magnetism into electronics,” says Chou. “We have shown a new way to efficiently utilize magnetism that opens up a lot of possibilities for future applications and research.”

Forbes

Researchers at MIT have developed magnetic transistors, “which could enable faster and more energy-efficient semiconductors,” reports Alex Knapp for Forbes. “Researchers have been trying to use magnets this way for years, but the materials used so far haven’t been optimal for computing functions,” explains Knapp. “That changed after experimenting with chromium sulfur bromide, which replaces the silicon in a conventional microchip and enables the transistors to be switched on and off with an electric current.” 

Scientific American

Researchers at MIT have found that up to 98% of the energy produced by an earthquake dissipates as heat, reports Stephanie Pappas for Scientific American, who notes that the findings could be used to help create better earthquake forecasts. The researchers “created itty-bitty lab earthquakes by pressing centimeter-sized wafers of a powdered granite and magnetic particle mixture between aluminum pistons until the wafers slipped or snapped,” explains Pappas. “They measured this process of cracking under stress with thermometers and piezoelectric sensors that mimic the seismographs used to measure real earthquakes.” 

VICE

Researchers at MIT have created “a series of miniature, controlled versions of real earthquakes to see where all that destructive energy actually goes and what it’s doing,” reports Luis Prada for Vice. “The goal of the research is to isolate the key physical processes that underlie every earthquake,” explains Prada. “The hope is that any knowledge gained will help refine earthquake prediction models and possibly even pinpoint which regions are sitting on fault lines ready to pop.” 

Gizmodo

Gizmodo reporter Gayoung Lee writes that MIT researchers created “lab quakes” or miniature versions of earthquakes in a controlled setting and found that “anywhere between 68 and 98% of the energy goes into generating heat around a quake’s epicenter.” The findings “could help inform the creation of a physical model for earthquake dynamics or seismologists’ efforts to pick out regions most vulnerable to earthquakes.”

CBC News

Prof. Nergis Mavalvala, dean of the MIT School of Science, joins Bob McDonald of CBC’s “Quirks & Quarks” to discuss how 10 years after LIGO’s first detection of gravitational waves the observatories are still “helping scientists better understand the life cycles of stars, the nature of gravity, and transforming the way we explore the farthest reaches of space.” Mavalvala shares: "Scientists have been able to design and construct these instruments that are capable of measuring imperceptibly small changes in spacetime distance, and in the past 10 years the sensitivity of these instruments has improved. That’s what is allowing us to make greater discoveries.” 

New York Times

Writing for The New York Times, Dennis Overbye celebrates the 10-year anniversary of LIGO’s first direct detection of gravitational waves, underscoring how LIGO has advanced our understanding of the universe’s cosmic history. The first detection was a discovery that “changed astrophysics, opening a window onto previously inaccessible realms of nature in which space could rip, bend, puff up, crumple and even vanish,” writes Overbye. The late Prof. Emeritus Rainer Weiss, who dreamed up the idea for LIGO, said of LIGO’s first detection in September 2015: “It was waving hello. It was amazing. The signal was so big, I didn’t believe it.”

Nature

Writing for Nature, Bruce Allen pays tribute to Prof. Emeritus Rainer Weiss, a pioneering physicist who “spearheaded the construction of the LIGO observatory to detect Einstein’s predicted ripples in space-time [and] leaves a legacy of persistence and mentorship.” Allen recalls how, decades earlier, Weiss rejoiced in a moment of discovery with him. “This is why we do science,” Weiss said. “Not for prizes or awards — that’s all nonsense. It’s for the satisfaction when something you’ve struggled with finally works.” Weiss, Allen emphasizes, was “a scientist driven by curiosity, persistence and the joy of understanding how the Universe works.”

The Wall Street Journal

Wall Street Journal reporter Jon Mooallem memorializes the life and work of Prof. Emeritus Rainer Weiss, from his time hacking surplus military electronics into sophisticated hi-fi receivers as a teenager to dreaming up the concept for the Laser Interferometer Gravitational-Wave Observatory (LIGO). Mooallem notes that Weiss and his LIGO colleagues’ breakthrough in achieving the first-ever detection of gravitational waves “has provided a new way of looking at the universe, of observing, through the charting of gravity waves emitted by moving objects, what was previously unobservable or unknown—a milestone that is frequently compared with Galileo’s invention of the telescope.”

Fast Company

Researchers at MIT have developed a new self-assembling battery material that could help combat growing concerns about EV battery waste, reports Grace Snelling for Fast Company. The new method “makes it much easier to separate [battery] component parts, leaving them ready for recycling,” writes Snelling. 

Gizmodo

Gizmodo reporter Gayoung Lee writes that scientists from the sPHENIX Collaboration, including MIT physicists, announced that the sPHENIX detector passed a “standard candle” test with “flying colors, correctly catching and measuring the energy level of colliding gold ions traveling close to the speed of light.” Lee notes that: “Passing the test bodes well for the detector’s future,” explaining that the detector was designed to precisely measure products of high-speed particle collisions. “The sPHENIX detector is like a ‘giant 3D camera’ tracking the number, energy, and paths of particles generated by a single collision.” 

The Boston Globe

Prof. Rainer Weiss, a Nobel Prize-winning physicist whose research helped “unlock the secrets of the universe,” has died at 92, reports Bryan Marquard for The Boston Globe. “He really is, by a large margin, the most influential person this field has seen. And will see,” said Caltech Prof. Emeritus Kip Thorne. Nergis Mavalvala, dean of the MIT School of Science who conducted her doctoral research with Weiss, shared that Weiss “worked on three different things, and every one of them has changed the way we understand physics and the universe.”

Gizmodo

Inspired by a scene in Harry Potter, researchers at MIT have developed a new self-assembling battery material that could one day serve as an “easy-to-recycle alternative for manufacturing EV batteries,” reports Gayoung Lee for Gizmodo. Notably, the process doesn’t require the harsh chemical and thermal conditions that make EV battery recycling so difficult, offering promising opportunities for recycling the batteries at scale.”

Space.com

Prof. Emeritus Rainer Weiss, a “renowned experimental physicist” who was “integral in confirming the existence of tiny ripples in spacetime called ‘gravitational waves,’” has died, reports Robert Lea for Space.com. “Remarkably, in confirming the existence of gravitational waves, Weiss both proved Einstein right and wrong at the same time,” writes Lea. “Einstein had been convinced that these ripples in spacetime were so faint that no apparatus on Earth could ever be sensitive enough to detect them, showing just how revolutionary LIGO was.”

Tri-City Herald

Tri-City Herald reporter Annette Cary memorializes the life and legacy of MIT Prof. Emeritus Rainer Weiss, a “renowned experimental physicist and Nobel laureate,” who was “key to [the] world’s first gravitational wave discovery.” At the opening ceremony in June 2022 for the LIGO Exploration Center in Hanford, Washington, Weiss relayed how life is more interesting if you have a deeper understanding of the world around you and “how science does its tricks.”