Skip to content ↓

Topic

Materials science and engineering

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 381 news clips related to this topic.
Show:

Tech Briefs

Prof. Carlos Portela and postdoc James Surjadi speaks with TechBriefs reporter Andrew Corselli about their work developing a new metamaterial that is both strong and stretchy. “We have demonstrated the concept with these polymeric materials and, from here, we see a couple of opportunities,” Surjadi explains. “One is extending this to more brittle material systems. The real dream will be to be able to do this with glasses, other ceramics, or even metals — things that normally we don't expect to deform a lot before they break. Brittle materials are the perfect candidates for us to try to make into woven-type architectures.” 

Materials World

Materials World reporter Sarah Morgan spotlights how MIT researchers have “combined the waterproof stickiness of mussel-inspired polymers with the germ-fighting properties of mucus-derived proteins, mucins, to form a cross-linking gel that strongly adheres to surfaces.” The new adhesive could be used to coat medical implants to prevent infection and bacteria build-up. Postdoc George Degen explains: “We demonstrate adhesion to wet tissue and metal-oxide surfaces, important substrates for biomedical applications. Moreover, our mucin-derived hydrogels discourage the formation of bacterial biofilms, raising the possibility of antifouling coatings.” 

The Atlantic

Prof. Rafael Gómez-Bombarelli speaks with The Atlantic reporter Matteo Wong about the current state of artificial intelligence technologies and how the technology might be used in medical care going forward. “Scientists use the tools that are out there for information processing and summarization,” says Gómez-Bombarelli. “Everybody does that; that’s an established win.” 

Forbes

Researchers at MIT have developed a new technique to fabricate “a metamaterial that is both stretchy and strong,” reports Alex Knapp for Forbes. The researchers also discovered that their new fabrication technique can be applied to the development of new materials, Knapp explains, adding that: “future research will be directed toward developing stretchy glass, ceramics and textiles.” 

Defense One

Defense One reporter Patrick Tucker writes that MIT researchers have developed “a new way to make large ultrathin infrared sensors that don’t need cryogenic cooling and could radically change night vision for the military or even autonomous vehicles.” Tucker notes: “This research points to a new kind of vision: not just night vision without cooling, but a production method for faster and cheaper development of night vision equipment with more U.S. components.”

Nature

Graduate students Chuck Downing and Zhichu Ren PhD '24 highlight the potential uses of AI in the research process, reports Amanda Heidt for Nature. “I didn’t know much going in, but I learnt quite a bit, and so I use these deep dives all the time now,” says Downing on using deep-research tools when approaching unfamiliar topics. “It’s better than anything else I’ve used so far at finding good papers and in presenting the information in a way that I can easily understand.”

Chronicle

Chronicle visits Prof. Skylar Tibbits and the Self-Assembly Lab to see how they are embedding intelligence into the materials around us, including furniture, clothing and buildings. Prof. Caitlin Mueller and graduate student Sandy Curth are digging into eco-friendly construction with programmable mud by “taking a low-cost material and a really fast manufacturing system to make buildings out of very, very low climate impact materials.” Says Tibbits: “MIT is a really wild place, and most people know of it for its technical expertise…But what I am really inspired by is on the creative end, the design spectrum. I think the mix of those two is super special.” He adds: “We can ask the right questions and discover new science, and we can also solve the right problems through engineering.”

Michigan Farm News

MIT engineers have developed a new system that helps pesticides adhere more effectively to plant leaves, allowing farmers to use fewer chemicals without sacrificing crop protection, reports Michigan Farm News. The new technology “adds a thin coating around droplets as they are being sprayed onto a field, increasing the stickiness of pesticides by as much as a hundredfold.”

Rural Radio Network

“A breakthrough from MIT researchers and AgZen, a spinoff company, is making agricultural spraying more efficient—cutting pesticide waste, lowering costs, and reducing environmental impact,” reports Rural Radio Network. “The technology works with existing sprayers, eliminating the need for costly equipment changes. In field tests, it doubled product retention on crops like soybeans and kale. AgZen’s spray-monitoring system, RealCoverage, has already helped farmers reduce pesticide use by 30 to 50 percent, and the new coating could improve efficiency even further.” 

Materials World

Materials World Magazine reporter Sarah Morgan spotlights how MIT researchers have developed a new material that can reduce the hazardous materials produced during aluminum manufacturing. “Our membrane, which has a positively charged coating, repels aluminum while letting the less positively-charged sodium ions pass through,” explains undergraduate student Trent Lee. “This process allows us to concentrate and recover aluminum, so it can be put back into the production process instead of being wasted.”

Fast Company

24M, an MIT startup, has been named to Fast Company’s list of the most innovative companies in the energy space for 2025, reports Alex Pasternack. The company “has been developing a portfolio of battery technologies designed to make batteries that are safer, cheaper, cleaner, and longer-lasting,” explains Pasternack. “Its technologies include a semisolid electrode for conventional and novel battery chemistries, which gives the battery more energy density and requires fewer materials, and a unique separator that monitors the cell and helps prevent the aberrations that cause shorts and fires.” 

FOX 28

MIT scientists have developed a new programmable fiber that can be stitched into clothing to help monitor the wearer’s health, reports Stephen Beech for FOX 28 News. “The gear has been tested by U.S. Army and Navy personnel during a month-long winter research mission to the Arctic,” Beech notes. 

Ars Technica

MIT engineers have manufactured a programmable computer fiber that can be woven into clothing and used to help monitor the wearer’s vital signs, reports Jennifer Ouellette for Ars Technica. “The long-term objective is incorporating fiber computers into apparel that can sense and respond to changes in the surrounding environment and individual physiology,” Ouellette notes. 

New Scientist

New Scientist reporter Alex Wilkins spotlights how MIT researchers have created a “computer that can be stitched into clothes, made from chips that are connected in a thread of copper and elastic fiber.” U.S. Army and Navy members will  be testing the use of the fiber computer to help monitor health conditions and prevent injury during a monthlong mission to the Arctic. Prof. Yoel Fink explains: “We’re getting very close to a point where we could write apps for fabrics and begin to monitor our health and do all kinds of things that a phone, frankly, cannot do.” 

The Guardian

In a letter to The Guardian, Research Scientist Florian Metzler, Research Affiliate Matt Lilley and their colleagues highlight the important advancements being made in cold fusion research. “Cold fusion could result in spectacular technologies. But we are convinced that the way forward requires rigorous, open-source scientific investigation, not more claims,” they write. “In many ways, cold fusion’s time has come. Advances in theory and experiment have made the LENR field eminently actionable.”