Skip to content ↓

Topic

Energy storage

Download RSS feed: News Articles / In the Media

Displaying 1 - 15 of 37 news clips related to this topic.
Show:

Physics World

Physics World has named two research advances by MIT researchers to its list of the Top 10 Breakthroughs of the Year. Prof. Gang Chen and his colleagues were selected for their work “showing that cubic boron arsenide is one of the best semiconductors known to science.” Prof. Asegun Henry, grad student Alina LaPotin and their colleagues were nominated for “constructing a thermophotovoltaic (TPV) cell with an efficiency of more than 40%.”

Popular Science

Popular Science reporter Helen Bradshaw writes that MIT researchers have improved the energy capacity of nonrechargeable batteries, the batteries used in pacemakers and other implantable medical devices, by employing a new type of electrolyte. “Expanding the life of primary batteries may also make them sustainable contenders,” writes Bradshaw. “Fewer batteries will have to be used in pacemakers as their lifespans increase, decreasing overall battery waste in addition to reducing the number of battery replacement surgeries needed.”

Vox

Dharik Mallapragada, a principal research scientist at the MIT Energy Initiative, speaks with Vox reporter Neel Dhanesha about the pressing need to find new ways to store renewable energy. “We need to think about solutions that go beyond conventional lithium-ion batteries,” says Mallapragada. “No single technology is going to make this happen. We have to think about it as a jigsaw puzzle, where every piece plays its role in the system.”

The Boston Globe

Prof. Emeritus Donald Sadoway and his colleagues have developed a safer and more cost-effective battery to store renewable energy, reports David Abel for The Boston Globe. The battery is “ethically sourced, cheap, effective and can’t catch fire,” says Sadoway.

Science

Researchers from MIT and elsewhere have developed a new cost-effective battery design that relies on aluminum ion, reports Robert F. Service for Science. “The battery could be a blockbuster,” writes Service, “because aluminum is cheap; compared with lithium batteries, the cost of materials for these batteries would be 85% lower.”

Forbes

Researchers at MIT have developed a battery that uses  aluminum and sulfur, two inexpensive and abundant materials, reports Alex Knapp and Alan Ohnsman for Forbes. “The batteries could be used for a variety of applications,” write Knapp and Ohnsman.

The Daily Beast

MIT researchers have created a new battery using inexpensive and plentiful materials to store and provide power, reports Tony Ho Tran for The Daily Beast. “The study’s authors believe that the battery can be used to support existing green energy systems such as solar or wind power for times when the sun isn’t shining or the air is still,” writes Tran. 

New Scientist

Prof. Donald Sadoway and his colleagues have developed a battery that can charge to full capacity in less than one minute, store energy at similar densities to lithium-ion batteries and isn’t prone to catching on fire, reports Alex Wilkins for New Scientist. “Although the battery operates at the comparatively high temperature of 110°C (230°F),” writes Wilkins, “it is resistant to fire because it uses an inorganic salt that can’t burn as its electrolyte, the material that allows charge to flow inside a battery.” Sadoway explains that “this is a totally new battery chemistry."

TechCrunch

TechCrunch reporter Devin Coldewey writes that a new report by MIT researchers finds that in order to successfully transition to a renewable energy grid, the federal government must intervene to help build green energy storage at a scale that will meet the nation’s needs. “The federal government has the means both to subsidize the utilization of existing storage options and to fund intensive research into new and promising ones,” writes Coldewey of the report’s findings. 

CBS Boston

Ambri, an MIT startup that has developed a liquid-metal battery that can be used for grid-level storage of renewable energy, has announced that it is months away from delivering its first battery to a customer, reports Jacob Wycoff for CBS Boston. "We want to have a battery that can draw from the sun even when the sun doesn't shine," said Prof. Donald Sadoway of the inspiration for Ambri’s battery.

WBUR

Prof. Donald Sadoway is the recipient of the 2022 European Inventor Award for his work in liquid metal batteries, reports WBUR. “MIT says the battery could enable the long-term storage of renewable energy,” says WBUR.

WBUR

WBUR reporter Bruce Gellerman spotlights a new report by MIT Energy Initiative (MITEI) researchers that emphasizes the importance of developing and deploying new ways to store renewable energy in order to transition to clean energy. “There are a variety of technologies and if we can develop [them] and drive those costs down, it could make getting to net-zero or zero in the electricity sector more affordable,” says Prof. Robert Armstrong, MITEI director.

The Boston Globe

A new report by researchers from MIT’s Energy Initiative (MITEI) underscores the feasibility of using energy storage systems to almost completely eliminate the need for fossil fuels to operate regional power grids, reports David Abel for The Boston Globe. “Our study finds that energy storage can help [renewable energy]-dominated electricity systems balance electricity supply and demand while maintaining reliability in a cost-effective manner,” says Prof. Robert Armstrong, director of MITEI.

Gizmodo

Researchers at MIT have built a highly efficient thermophotovoltaic cell that converts incoming photons to electricity, reports Kevin Hurler for Gizmodo. “We developed this technology—thermal batteries—because storing energy as heat rather than storing it electrochemically is 10 to 100 times cheaper," explains Prof. Asegun Henry. 

Science

A team of researchers from MIT and the National Renewable Energy Laboratory successfully reached a 30% jump in thermophotovoltaic (TPV) efficiency, reports Robert F. Service for Science. “[TPV] is a semiconductor structure that concerts photons emitted from a heat source to electricity, just as a solar cell transforms sunlight into power,” explains Service.