Skip to content ↓

Topic

Earth and atmospheric sciences

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 284 news clips related to this topic.
Show:

Los Angeles Times

Los Angeles Times reporter Rosanna Xia spotlights Prof. Susan Solomon’s new book, “Solvable: How We Healed the Earth, and How We Can Do It Again,” as a hopeful remedy to climate grief. “An atmospheric chemist at MIT whose research was key to healing the giant gaping hole in our ozone layer, Solomon gives us much-needed inspiration — and some tangible ways forward,” explains Xia. 

USA Today

MIT scientists have solved a decades old mystery by demonstrating impact vaporization is the primary cause of the moon’s thin atmosphere, reports Eric Lagatta for USA Today.  The findings, “have implications far beyond determining the moon's atmospheric origins,” writes Lagatta. “In fact, it's not unthinkable that similar processes could potentially be taking place at other celestial bodies in the solar system.”

National Geographic

By analyzing isotopes of potassium and rubidium in the lunar soil, Prof. Nicole Nie and her team have demonstrated that micrometeorite impacts are the main cause of the moon’s thin atmosphere, reports Isabel Swafford for National Geographic. “Understanding the space environments of different planetary bodies is essential for planning future missions and exploring the broader context of space weathering,” says Nie.

The Washington Post

Prof. Richard Binzel speaks with Washington Post reporter Lizette Ortega about Apophis – an asteroid estimated to fly past Earth in April 2029. “Nature is performing this once-per-several-thousand-years experiment for us,” says Binzel. “We have to figure out how to watch.”

Newsweek

Newsweek reporter Jess Thomson spotlights, Prof. Nicole Nie’s research uncovering the origins of the moon’s thin atmosphere. “The researchers described how lunar samples from the Apollo missions revealed that meteorites of varying sizes have constantly hit the moon's surface, vaporizing atoms in the soil and kicking them up into the atmosphere,” writes Thomson. “The constant hitting of the moon replenishes any gases lost to space.” 

Reuters

By analyzing lunar soil samples, MIT scientists have found that the moon’s thin atmosphere was created by meteorite impacts over billions of years, reports Will Dunham for Reuters. “Many important questions about the lunar atmosphere remain unanswered,” explains Prof. Nicole Nie. “We are now able to address some of these questions due to advancements in technology.” 

The Guardian

MIT scientists analyzed lunar soil samples and discovered that meteorite impacts likely created the moon’s thin atmosphere, reports Nicola Davis for The Guardian. “Our findings provide a clearer picture of how the moon’s surface and atmosphere interact over long timescales, [and] enhance our understanding of space weathering processes,” explains Prof. Nicole Nie. 

Scientific American

Prof. Richard Binzel talks with Meghan Bartels of Scientific American about the importance of studying Asteroid Apophis – a sizeable space rock that will near Earth within “one tenth of the Earth-moon distance” in 2029. “It’s an incredibly rare event that an asteroid like Apophis would hit the Earth, but it’s better to be knowledgeable than to [be] caught unaware,” says Binzel, a planetary scientist Bartels notes has “spent years raising awareness about the scientific opportunities of the 2029 flyby.” 

Astronomy

Prof. Richard Binzel organized a centennial celebration for the Johnstown meteorite, which was seen crashing into Earth on July 6, 1924 in Weld County, Colorado, and later “became a link to understanding a whole class of meteorites,” reports Elizabeth Gamillo for Astronomy. “Binzel describes the Johnstown rock not as the meteorite that launched a thousand ships, but one that instead launched one major mission to the asteroid belt,” writes Gamillo. 

The Guardian

A research group led by postdoctoral associate Minde An analyzed China’s greenhouse gas emissions over the past decade, finding a substantial increase thought to be primarily driven by aluminum production, reports Ellen McNally for The Guardian. The researchers, writes McNally, say these levels could be reduced “with technological innovation and incorporation of the aluminum industry into the carbon market, or a national carbon trading scheme allowing emitters to buy or sell emission credits.” 

New York Times

Prof. Kerry Emanuel speaks with New York Times reporter Christopher Kuo about the expectations for the upcoming hurricane season. When discussing Hurricane Beryl, Emanuel says “usually the June and July storms are relatively benign. They don’t get up to full strength, so it’s very rare to have this.” 

Popular Science

Prof. Richard Binzel speaks with Popular Science reporter Briley Lewis about how frequently asteroids come close to Earth. "I would be worried if we weren’t taking the asteroid survey challenge seriously,” says Binzel. "NASA and its funding sources are stepping up to the adult responsibility of doing the necessary searching to make sure our asteroid future is secure.” 

Scientific American

Prof. Kerry Emanuel speaks with Scientific American reporter Chelsea Harvey about the future of hurricane forecasting and preparations. “I can’t predict the future, but I’m optimistic that things will get better,” says Emanuel. “And you’ll see people moving away from risky places, which is already beginning to happen. And those who elect to stay [will be] paying a lot of insurance or retrofitting houses to be built stronger.”

Associated Press

Prof. Kerry Emanuel speaks with Associated Press reporter Seth Borenstein about this year’s Atlantic hurricane season. “This year, there’s also a significant difference between water temperature and upper air temperature throughout the tropics,” writes Borenstein. “The Atlantic relative to the rest of the tropics is as warm as I’ve seen,” says Emanuel.  

Boston Globe

MIT scientists have developed a new model to analyze movements across the Antarctic Ice Sheet, “a critical step in understanding the potential speed and severity of sea level rise,” writes Ava Berger for The Boston Globe. “The flow of glaciers is really the thing that could lead to catastrophic sea level rise scenarios,” explains Prof. Brent Minchew. The findings take “a really big and important step toward understanding what the future is going to look like.”