Skip to content ↓

Topic

Department of Energy (DoE)

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 124 news clips related to this topic.
Show:

Tech Briefs

Graduate student Chung-Tao (Josh) Chou speaks with Tech Briefs reporter Andrew Corselli about his work developing a magnetic transistor that could lead to more energy-efficient circuits. “People have known about magnets for thousands of years, but there are very limited ways to incorporate magnetism into electronics,” says Chou. “We have shown a new way to efficiently utilize magnetism that opens up a lot of possibilities for future applications and research.”

Forbes

Researchers at MIT have developed magnetic transistors, “which could enable faster and more energy-efficient semiconductors,” reports Alex Knapp for Forbes. “Researchers have been trying to use magnets this way for years, but the materials used so far haven’t been optimal for computing functions,” explains Knapp. “That changed after experimenting with chromium sulfur bromide, which replaces the silicon in a conventional microchip and enables the transistors to be switched on and off with an electric current.” 

Fast Company

Researchers at MIT have developed a new self-assembling battery material that could help combat growing concerns about EV battery waste, reports Grace Snelling for Fast Company. The new method “makes it much easier to separate [battery] component parts, leaving them ready for recycling,” writes Snelling. 

Gizmodo

Gizmodo reporter Gayoung Lee writes that scientists from the sPHENIX Collaboration, including MIT physicists, announced that the sPHENIX detector passed a “standard candle” test with “flying colors, correctly catching and measuring the energy level of colliding gold ions traveling close to the speed of light.” Lee notes that: “Passing the test bodes well for the detector’s future,” explaining that the detector was designed to precisely measure products of high-speed particle collisions. “The sPHENIX detector is like a ‘giant 3D camera’ tracking the number, energy, and paths of particles generated by a single collision.” 

Gizmodo

Inspired by a scene in Harry Potter, researchers at MIT have developed a new self-assembling battery material that could one day serve as an “easy-to-recycle alternative for manufacturing EV batteries,” reports Gayoung Lee for Gizmodo. Notably, the process doesn’t require the harsh chemical and thermal conditions that make EV battery recycling so difficult, offering promising opportunities for recycling the batteries at scale.”

Interesting Engineering

Researchers at MIT have successfully captured the first images of individual atoms interacting freely in space, reports Georgina Jedikovska for Interesting Engineering. “The images, which show interactions between free-range particles that had only been theorized until now, will reportedly allow the scientists to directly observe quantum phenomena in real space,” writes Jedikovska.  

Military & Aerospace Electronics

MIT researchers have made a key advance in the creating a practical quantum computer by demonstrating “remote entanglement—an essential step in building distributed quantum networks—by sending photons between two quantum processors,” reports Military & Aerospace Electronics. “This breakthrough lays the groundwork for large-scale quantum computing networks and could extend to other quantum computing platforms and the quantum internet.”

Somewhere on Earth

Prof. Michael Strano joins “Somewhere on Earth” podcast host Gareth Mitchell to discuss how he and his colleagues developed tiny batteries that could be used to power cell-sized robots. Roughly the thickness of a human hair, the new battery can create a current by capturing oxygen. “I would say we're making the LEGOs, the building blocks that go into robots,” Strano says. “We’re building the parts and it's an exciting time for the field.”

TechCrunch

Researchers at MIT have developed tiny batteries capable of powering cell-sized robots that can “execute tasks as varied as targeting drug delivery inside the human body to checking pipelines for gas leaks,” reports Brian Heater for TechCrunch. “Despite the barely visible size, the researchers say the batteries can generate up to 1 volt, which can be used to power a sensor, circuit or even a moving actuator.”

ClimateWire

ClimateWire reporter John Fialka writes that MIT engineers have developed a new process to convert carbon dioxide into a powder that can be safely stored for decades. “The MIT process gets closer to an ambitious dream: turning captured CO2 into a feedstock for clean fuel that replaces conventional batteries and stores electricity for months or years,” writes Fialka. “That could fill gaps in the nation's power grids as they transition from fossil fuels to intermittent solar and wind energy.”

The Boston Globe

Prof. Jessika Trancik speaks with Boston Globe reporter Aruni Soni about her new study that finds reducing the cost of solar energy will be accelerated by improvements in soft tech. “We found that the soft technology involved in solar energy really has not changed and hasn’t improved nearly as quickly as the hardware,” says Trancik. “These soft costs, in many systems, can be 50 percent or even more of the total cost of solar electricity.”

NBC Boston

NBC Boston’s Jeff Saperstone visits MIT to learn more about how researchers discovered that a common hydrogel used in cosmetic creams, industrial coatings and pharmaceutical capsules can absorb moisture from the atmosphere as the temperature rises. The material could one day be used to harvest moisture for drinking water or feeding crops. “For a planet that's getting hotter, this could be a game-changing discovery,” Saperstone notes.

The Economist

MIT researchers devised a new way to arrange LED pixels to create screens with a much higher resolution than is currently possible, reports The Economist. The new technique, which involves stacking micro LEDS, could also be used to make “VR images that appear far more lifelike than today’s.”

Gizmodo

Gizmodo reporter Isaac Schultz writes that researchers from MIT, Caltech and elsewhere have found that “quantum systems can imitate wormholes, theorized shortcuts in spacetime, in that the systems allow the instantaneous transit of information between remote locations.” Grad student Alexander Zlokapa explains that: “We performed a kind of quantum teleportation equivalent to a traversable wormhole in the gravity picture. To do this, we had to simplify the quantum system to the smallest example that preserves gravitational characteristics so we could implement it.”

Physics World

Physics World has named two research advances by MIT researchers to its list of the Top 10 Breakthroughs of the Year. Prof. Gang Chen and his colleagues were selected for their work “showing that cubic boron arsenide is one of the best semiconductors known to science.” Prof. Asegun Henry, grad student Alina LaPotin and their colleagues were nominated for “constructing a thermophotovoltaic (TPV) cell with an efficiency of more than 40%.”