Skip to content ↓

Topic

Bioengineering and biotechnology

Download RSS feed: News Articles / In the Media / Audio

Displaying 16 - 30 of 161 news clips related to this topic.
Show:

NPR

Lydia Villa Komaroff PhD ’75 speaks with NPR reporter Emily Kwong about her work in gene editing. Biotechnology and genetic engineering were “enormously impactful,” says Komaroff. “So impactful that molecular biology pretty much disappeared as a field, it has become a tool that is of use in every field of biology and medicine today.”

The Boston Globe

Jake Becraft PhD ’19 and former postdoctoral associate Tasuku Kitada co-founded Strand Therapeutics, a biotech firm developing mRNA therapies for cancer, reports Ryan Cross for The Boston Globe. They created “a way to activate mRNA in the presence of particular microRNAs – a much more useful application for therapies,” writes Cross. 

Forbes

Forbes reporter John Cumbers spotlights Jasmina Aganovic ’09 for her work in combining biotechnology with skincare. "Biotechnology enables us to expand the ingredient palette of the beauty industry to molecules in all parts of the tree of life, ethically and sustainably," says Aganovic.

Scientific American

MIT scientists have developed a miniature antenna that could one day be used to help safely transmit data from within living cells “by resonating with acoustic rather than electromagnetic waves,” reports Andrew Chapman for Scientific American. “A functioning antenna could help scientists power, and communicate with, tiny roving sensors within the cell,” writes Chapman, “helping them better understand these building blocks and perhaps leading to new medical treatments.”

New Scientist

Prof. Kevin Esvelt speaks with New Scientist reporter Michael Le Page about his work outlining a roadmap to help counter the risk posed by pandemic terrorism. “The message is, this is serious but this is totally solvable,” says Esvelt.

Wired

Research from Synlogic, a biotech company founded by Profs James Collins and Timothy Lu, has found that it’s the company’s engineered bacteria could provide some benefit to patients with a rare genetic disease, reports Emily Mullin for Wired. “Similar to how you might program a computer, we can tinker with the DNA of bacteria and have them do things like produce a drug at the right time and the right place, or in this case, break down a toxic metabolite,” says Lu.

The Boston Globe

Scientists from MIT, Duke and Stanford have developed a new technique to make gene therapies safer and more effective, reports Ryan Cross for The Boston Globe. “It’s about making these therapies much smarter and programmable,” says Jonathan S. Gootenberg, a research scientist at the McGovern Institute.

CNBC

CNBC reporter Catherine Clifford spotlights C16 Biosciences, a startup co-founded by MIT alumni that is developing a palm oil alternative called Palmless. “What we are building is a platform technology that can produce all different kinds of microbial oils,” explains David Heller ’18, co-founder and head of operations at C16 Biosciences. “It’s definitely possible that we’re able to make other kinds of vegetable oil replacements in the future.” 

Boston Business Journal

Landmark Bio, a cell and gene therapy manufacturing company co-founded by MIT and a number of other institutions, is focused on accelerating access to innovative therapies for patients, reports Rowan Walrath for Boston Business Journal. "Landmark's new facility includes laboratory space for research and early-stage drug development, as well as analytics tools,” writes Walrath. 

The Boston Globe

MIT and a number of other local institutions have launched Landmark Bio, a cell and gene therapy manufacturing firm aimed at helping small startups develop experimental therapies that are reliable, consistent, and large enough to be used in clinical trials, reports Ryan Cross for The Boston Globe.

The Washington Post

Washington Post reporter Pranshu Verma writes about how Prof. Dina Katabi and her colleagues developed a new AI tool that could be used to help detect early signs of Parkinson’s by analyzing a patient’s breathing patterns. For diseases like Parkinson’s “one of the biggest challenges is that we need to get to [it] very early on, before the damage has mostly happened in the brain,” said Katabi. “So being able to detect Parkinson’s early is essential.”

Forbes

Forbes contributor Jennifer Kite-Powell spotlights how MIT researchers created a new AI system that analyzes radio waves bouncing off a person while they sleep to monitor breathing patterns and help identify Parkinson’s disease. “The device can also measure how bad the disease has become and could be used to track Parkinson's progression over time,” writes Kite-Powell.

The Boston Globe

A new tool for diagnosing Parkinson’s disease developed by MIT researchers uses an AI system to monitor a person’s breathing patterns during sleep, reports Hiawatha Bray for The Boston Globe. “The system is capable of detecting the chest movements of a sleeping person, even if they’re under a blanket or lying on their side,” writes Bray. “It uses software to filter out all other extraneous information, until only the breathing data remains. Using it for just one night provides enough data for a diagnosis.”

WBUR

Boston Globe reporter Hiawatha Bray speaks with Radio Boston host Tiziana Dearing about how MIT researchers developed an artificial intelligence model that uses a person’s breathing patterns to detect Parkinson’s Disease. The researchers “hope to continue doing this for other diseases like Alzheimer’s and potentially other neurological diseases,” says Bray.

Fierce Biotech

Researchers at MIT have developed an artificial intelligence sensor that can track the progression of Parkinson’s disease in patients based on their breathing while they sleep, reports Conor Hale for Fierce Biotech. “The device emits radio waves and captures their reflection to read small changes in its immediate environment,” writes Hale. “It works like a radar, but in this case, the device senses the rise and fall of a person’s chest.”