Skip to content ↓

Topic

Astronomy and astrophysics

Download RSS feed: News Articles / In the Media / Audio

Displaying 61 - 75 of 487 news clips related to this topic.
Show:

USA Today

MIT scientists have solved a decades old mystery by demonstrating impact vaporization is the primary cause of the moon’s thin atmosphere, reports Eric Lagatta for USA Today.  The findings, “have implications far beyond determining the moon's atmospheric origins,” writes Lagatta. “In fact, it's not unthinkable that similar processes could potentially be taking place at other celestial bodies in the solar system.”

National Geographic

By analyzing isotopes of potassium and rubidium in the lunar soil, Prof. Nicole Nie and her team have demonstrated that micrometeorite impacts are the main cause of the moon’s thin atmosphere, reports Isabel Swafford for National Geographic. “Understanding the space environments of different planetary bodies is essential for planning future missions and exploring the broader context of space weathering,” says Nie.

Newsweek

Newsweek reporter Jess Thomson spotlights, Prof. Nicole Nie’s research uncovering the origins of the moon’s thin atmosphere. “The researchers described how lunar samples from the Apollo missions revealed that meteorites of varying sizes have constantly hit the moon's surface, vaporizing atoms in the soil and kicking them up into the atmosphere,” writes Thomson. “The constant hitting of the moon replenishes any gases lost to space.” 

Reuters

By analyzing lunar soil samples, MIT scientists have found that the moon’s thin atmosphere was created by meteorite impacts over billions of years, reports Will Dunham for Reuters. “Many important questions about the lunar atmosphere remain unanswered,” explains Prof. Nicole Nie. “We are now able to address some of these questions due to advancements in technology.” 

The Guardian

MIT scientists analyzed lunar soil samples and discovered that meteorite impacts likely created the moon’s thin atmosphere, reports Nicola Davis for The Guardian. “Our findings provide a clearer picture of how the moon’s surface and atmosphere interact over long timescales, [and] enhance our understanding of space weathering processes,” explains Prof. Nicole Nie. 

PBS

PBS Space Time host Matt O’Dowd highlights research by Prof. David Kaiser and graduate student Elba Alonso-Monsalve delving into the composition of primordial black holes and potentially confirming the existence of color-charged black holes. “It may stand to reason, that colorful black holes were once the most natural thing in the world,” O’Dowd muses. 

CNN

CNN’s Ashley Strickland reports on the discovery of an exoplanet on the path to becoming a “hot Jupiter,” providing clues about the evolution of these massive Jupiter-like planets closely orbiting their host stars. As Prof. Sarah Millholland explains: “This system highlights how incredibly diverse exoplanets can be. They are mysterious other worlds that can have wild orbits that tell a story of how they got that way and where they’re going.”

The Wall Street Journal

Writing for The Wall Street Journal, Prof. Emeritus Marcia Bartusiak reviews “Accidental Astronomy: How Random Discoveries Shape the Science of Space,” a new book written by Oxford astrophysicist Chris Lintott. The book touches on the field’s familiar history, notes Bartusiak, but “more fun are the lesser-known stories” of amateur astronomers and unexpected findings. “Mr. Lintott conducts this breezy tour with an engaging voice, a diverting sense of humor and a humble awe for the wonders of the universe,” writes Bartusiak. 

Newsweek

MIT scientists have found that lakes and seas made of methane may have shaped Titan’s shores, writes Jess Thomson for Newsweek. “This discovery could allow astronomers to learn even more about the conditions on Titan,” writes Thomson. “Knowing that waves carved out the coast enables them to predict how fast and strong the winds on the moon are and from which direction they blow.” 

Gizmodo

Gizmodo reporter Passant Rabie spotlights new research by MIT geologists that finds waves of methane on Titan likely eroded and shaped the moon’s coastlines. “If we could stand at the edge of one of Titan’s seas, we might see waves of liquid methane and ethane lapping on the shore and crashing on the coasts during storms,” explains Prof. Taylor Perron. “And they would be capable of eroding the material that the coast is made of.” 

CNN

Researchers at MIT have discovered the composition of primordial black holes, “potentially discovering an entirely new type of exotic black hole in the process,” reports Jacopo Prisco for CNN. “We were making use of Stephen Hawking’s famous calculations about black holes, especially his important result about the radiation that black holes emit,” says Prof. David Kaiser. “These exotic black holes emerge from trying to address the dark matter problem — they are a byproduct of explaining dark matter.”

New Scientist

Researchers at MIT have “analyzed how primordial black holes with a trait known as color charge could have formed in the soup of particles that composed the early universe,” reports Leah Crane for New Scientist. “They’re not really colors,” explains Prof. David Kaiser. “If we zoomed in with a microscope we wouldn’t see colors with our eyes, but it’s a way of accounting for the fact that nature seems to only allow color-neutral combinations.” 

Forbes

Prof. Sara Seager, Prof. Robert Langer and Prof. Nancy Kanwisher have been awarded the 2024 Kavli Prize for their work in the three award categories: astrophysics, nanoscience, and neuroscience, respectively, reports Michael T. Nietzel for Forbes. According to the Norwegian Academy of Science and Letters, this award honors scientists with outstanding research “that has broadened our understanding of the big, the small and the complex,” writes Nietzel. 

New Scientist

Prof. Netta Engelhardt talks to New Scientist’s Thomas Lawton about the possibility of singularities existing outside black holes. Theorists can now probe singularities from a deeper perspective, using insights into the possible quantum foundations of gravity. This new approach “flips the script” on how we think about singularities, says Engelhardt.

NBC Boston

NBC Boston reporter Matt Fortin visits the lab of Prof. Julien de Wit to learn more about his work discovering two new planets, a puffy, Jupiter-sized planet located over 1,000 light years away that has the consistency of cotton candy and an Earth-sized planet that may lack an atmosphere. “Through studying other atmospheres we get to improve our understanding of our own climate,” de Wit explains. “It’s like a sensitive mirror that helps us reflect back on us, so it’s all these different vantage points that we are gaining. That’s what exoplanetary science gives us.”