Physicists trap electrons in a 3D crystal for the first time
The results open the door to exploring superconductivity and other exotic electronic states in three-dimensional materials.
The results open the door to exploring superconductivity and other exotic electronic states in three-dimensional materials.
Flexible platform could produce enigmatic materials, lead to new studies of exotic phenomena.
Coupling engineered bacteria with low-power electronics could be highly effective in diagnosis, treatment of bowel diseases.
MIT system demonstrates greater than 100-fold improvement in energy efficiency and a 25-fold improvement in compute density compared with current systems.
The ultrasmall “switch” could be easily scaled.
For MIT CSHub postdoc Miaomiao Zhang, communicating effectively is perhaps the most important part of research.
Researchers discover how to control the anomalous Hall effect and Berry curvature to create flexible quantum magnets for use in computers, robotics, and sensors.
Work could lead to heady applications in novel electronics and more.
The approach could improve the performance of many other materials as well.
The teams will work toward sustainable microchips and topological materials as well as socioresilient materials design.
Work with skyrmions could have applications in future computers and more.
With a grant from the Office of Naval Research, MIT researchers aim to design novel high-performance steels, with potential applications including printed aircraft components and ship hulls.
Professor Emeritus Donald Sadoway, renowned electrochemist and influential educator, reflects on 45 years at MIT.
With new techniques in electron microscopy, James LeBeau explores the nanoscale landscape within materials to understand their properties.
Inaugural award goes to MIT condensed matter theory professors of physics.