Skip to content ↓

Faces have a special place in the brain

By increasing the resolution of brain scans, MIT scientist Nancy Kanwisher and colleagues have shown that brain regions that specialize in  recognizing faces (pink area) and those that specialize in bodies (yellow area) are close but distinct.
Caption:
By increasing the resolution of brain scans, MIT scientist Nancy Kanwisher and colleagues have shown that brain regions that specialize in recognizing faces (pink area) and those that specialize in bodies (yellow area) are close but distinct.
Credits:
Image / Becca Schwarzlose

Are you tempted to trade in last year's digital camera for a newer model with even more megapixels? Researchers who make images of the human brain have the same obsession with increasing their pixel count, which increases the sharpness (or "spatial resolution") of their images. And improvements in spatial resolution are happening as fast in brain imaging research as they are in digital camera technology.

Nancy Kanwisher, Rebecca Frye Schwarzlose and Christopher Baker at the McGovern Institute for Brain Research at MIT are now using their higher-resolution scans to produce much more detailed images of the brain than were possible just a couple years ago. Just as "hi-def" TV shows clearer views of a football game, these finely grained images are providing new answers to some very old questions in brain research.

One such question hinges on whether the brain is comprised of highly specialized parts, each optimized to conduct a single, very specific function. Or is it instead a general-purpose device that handles many tasks but specializes in none?

Using the higher-resolution scans, the Kanwisher team now provides some of the strongest evidence ever reported for extreme specialization. Their study appeared in the Nov. 23 issue of The Journal of Neuroscience.

The study focuses on face recognition, long considered an example of brain specialization. In the 1990s, researchers including Kanwisher identified a region known as the fusiform face area (FFA) as a potential brain center for face recognition. They pointed to evidence from brain-imaging experiments, and to the fact that people with damage to this brain region cannot recognize faces, even those of their family and closest friends.

However, more recent brain-imaging experiments have challenged this claimed specialization by showing that this region also responds strongly when people see images of bodies and body parts, not just faces. The new study now answers this challenge and supports the original specialization theory.

Schwarzlose suspected that the strong response of the face area to both faces and bodies might result from the blurring together of two distinct but neighboring brain regions that are too close together to distinguish at standard scanning resolutions.

To test this idea, Schwarzlose and her colleagues increased the resolution of their images (like increasing the megapixels on a digital camera) ten-fold to get sharper images of brain function. Indeed, at this higher resolution they could clearly distinguish two neighboring regions. One was primarily active when people saw faces (not bodies), and the other when people saw bodies (not faces).

This finding supports the original claim that the face area is in fact dedicated exclusively to face processing. The results further demonstrate a similar degree of specialization for the new "body region" next door.

The team's new discovery highlights the importance of improved spatial resolution in studying the structure of the human brain. Just as a higher megapixel digital camera can show greater detail, new brain imaging methods are revealing the finer-grained structure of the human brain. Schwarzlose and her colleagues plan to use the new scanning methods to look for even finer levels of organization within the newly distinguished face and body areas. They also want to figure out how and why the brain regions for faces and bodies land next to each other in the first place.

Kanwisher is the Ellen Swallow Richards Professor of Cognitive Neuroscience. Her colleagues on this work are Schwarzlose, a graduate student in brain and cognitive sciences, and Baker, a postdoctoral researcher in the department.

The research was supported by the National Institutes of Health, the National Center for Research Resources, the Mind Institute, and the National Science Foundation's Graduate Research Fellowship Program.

A version of this article appeared in MIT Tech Talk on December 21, 2005 (download PDF).

Related Links

Related Topics

More MIT News

Andres Sevtsuk stands in the middle of a crosswalk as blurry travelers go by.

Street smarts

Andres Sevtsuk applies new sources of data to creating more sustainable, walkable, and economically thriving city spaces.

Read full story