Skip to content ↓

Mars features are not ancient ocean shorelines, researchers claim

EAPS research scientist Gregory Neumann teamed up with Paul Withers, a graduate student at the University of Arizona, to produce high-resolution shaded relief maps of the northern plains of Mars from the Mars Orbiter Laser Altimeter (MOLA). The maps show that the plains display wrinkle ridges, which are formed by stresses associated with the volcanic Tharsis Rise, shown above. The researchers noti...
Caption:
EAPS research scientist Gregory Neumann teamed up with Paul Withers, a graduate student at the University of Arizona, to produce high-resolution shaded relief maps of the northern plains of Mars from the Mars Orbiter Laser Altimeter (MOLA). The maps show that the plains display wrinkle ridges, which are formed by stresses associated with the volcanic Tharsis Rise, shown above. The researchers noticed that certain features that were previously interpreted as shorelines looked just like the wrinkle ridges, casting doubt on one line of evidence for the existence of an ocean in the northern plains of Mars during the middle part of Martian history.
Credits:
Photo courtesy / MOLA Science Team

What scientists suspect might be ancient ocean shorelines on the northern plains of Mars is actually a network of tectonic ridges related to dramatic Martian volcanism, a University of Arizona planetary sciences graduate student and an MIT postdoctoral researcher reported in the April 5 issue of Nature.

Their new findings don't rule out the possibility that an ancient ocean once did cover the northern half of Mars. However, what previously has been reported to be ancient shorelines apparently are not. The discovery of the network of ridges "opens a new tectonic window into Mars," the authors say.

Paul Withers of the University of Arizona and Gregory A. Neumann, a research scientist in MIT's Department of Earth, Atmospheric and Planetary Sciences, analyzed dazzlingly precise new views of Mars' topography from the Mars Orbiter Laser Altimeter (MOLA).

The instrument continues an extended mission in orbit around Mars on the Mars Global Surveyor spacecraft. MOLA transmits infrared laser pulses toward the surface of Mars, and the measurements are used to create topographic maps accurate to within a meter of elevation. Viking-era topographic maps of Mars were accurate only to about a kilometer.

Withers worked last summer through a graduate student program with members of the MOLA science team at the NASA Goddard Space Flight Center. He and Dr. Neumann analyzed ridges that cover the enigmatic northern plains of Mars. The region is the flattest known surface in the solar system, and a leading theory is that an ocean created such extraordinary smoothness.

Authors of a December 1999 article in Science identified candidate shorelines of the possible ancient ocean based on the new MOLA maps. The topographical profile shows a succession of flat terraces along a linear slope in one case, and in another case, a series of slopes in the right relation to be shorelines.

Mr. Withers and Dr. Neuman specifically reexamined two leading candidate paleoshoreline groups, one group near the Utopia impact basin and the other on the opposite side of the proposed ocean near the Alba Patera volcano.

The details of the ridges near the Utopia basin don't look like paleocoastline, Mr. Withers said in an interview. "The morphologies are inconsistent with formation by shoreline processes. There are the flat terraces, but the ridges are on what would be the oceanward side. That's difficult to explain if you have an ocean coming in, flattening things smooth over the terrace and then receding again."hhh

He and Dr. Neumann conclude that the ridges record a history of enormous tectonic stress and strain that forced the Martian crust to form 10-mile-high volcanoes.

"Most ridges appear to be related to obvious stress centers, such as the volcanic Tharsis Rise, the Utopia impact basin and the Alba Patera volcano," the authors reported. The direction and shapes of these ridges indicate that they have a tectonic origin.

The network of ridges is the only tectonic feature in the region.

"In future work, we hope that studying these ridges will reveal how the huge Martian volcanoes formed, what the Martian crust and lithosphere were like at the time, and what the northern plains of Mars are like today beneath their blanketing surface layer of Martian dust," they wrote.

A version of this article appeared in MIT Tech Talk on April 11, 2001.

Related Topics

More MIT News