Skip to content ↓

Topic

Wireless

Download RSS feed: News Articles / In the Media / Audio

Displaying 16 - 30 of 117 news clips related to this topic.
Show:

Forbes

Forbes contributor Jennifer Kite-Powell spotlights how MIT researchers created a new AI system that analyzes radio waves bouncing off a person while they sleep to monitor breathing patterns and help identify Parkinson’s disease. “The device can also measure how bad the disease has become and could be used to track Parkinson's progression over time,” writes Kite-Powell.

The Boston Globe

A new tool for diagnosing Parkinson’s disease developed by MIT researchers uses an AI system to monitor a person’s breathing patterns during sleep, reports Hiawatha Bray for The Boston Globe. “The system is capable of detecting the chest movements of a sleeping person, even if they’re under a blanket or lying on their side,” writes Bray. “It uses software to filter out all other extraneous information, until only the breathing data remains. Using it for just one night provides enough data for a diagnosis.”

WBUR

Boston Globe reporter Hiawatha Bray speaks with Radio Boston host Tiziana Dearing about how MIT researchers developed an artificial intelligence model that uses a person’s breathing patterns to detect Parkinson’s Disease. The researchers “hope to continue doing this for other diseases like Alzheimer’s and potentially other neurological diseases,” says Bray.

Fierce Biotech

Researchers at MIT have developed an artificial intelligence sensor that can track the progression of Parkinson’s disease in patients based on their breathing while they sleep, reports Conor Hale for Fierce Biotech. “The device emits radio waves and captures their reflection to read small changes in its immediate environment,” writes Hale. “It works like a radar, but in this case, the device senses the rise and fall of a person’s chest.”

Boston.com

MIT researchers have developed a new artificial intelligence system that uses a person’s breathing pattern to help detect Parkinson’s sisease, reports Susannah Sudborough for Boston.com. “The device emits radio signals, analyzes reflections off the surrounding environment, and monitors the person’s breathing patterns without any bodily contact,” writes Sudborough.

STAT

Researchers at MIT and other institutions have developed an artificial intelligence tool that can analyze changes in nighttime breathing to detect and track the progression of Parkinson’s disease, reports Casey Ross for STAT. “The AI was able to accurately flag Parkinson’s using one night of breathing data collected from a belt worn around the abdomen or from a passive monitoring system that tracks breathing using a low-power radio signal,” writes Ross.

Popular Science

Profs. Ruonan Han and Qing Hu speak with Popular Science reporter Rahul Rao about their work with terahertz waves. “There’s a laundry list of potential applications,” says Hu of the promise of terahertz waves.

TechCrunch

TechCrunch reporter Haje Jan Kamps writes that MIT researchers have developed an “electronically steerable terahertz antenna array, which operates like a controllable mirror.” The new device “may enable higher-speed communications and vision systems that can see through foggy or dusty environments.”

NBC Boston

Prof. Muriel Médard speaks with NBC Boston reporter Raul Martinez about 5G technologies and helps demystify the concerns surrounding 5G networks and airline safety.

The Wall Street Journal

In an article for The Wall Street Journal about next generation technologies that can create and quantify personal health data, Laura Cooper spotlights Prof. Dina Katabi’s work developing a noninvasive device that sits in a person’s home and can help track breathing, heart rate, movement, gait, time in bed and the length and quality of sleep. The device “could be used in the homes of seniors and others to help detect early signs of serious medical conditions, and as an alternative to wearables,” writes Cooper.

The Wall Street Journal

MIT researchers have developed a new robot that can help locate hidden items using AI and wireless technologies, reports Benoit Morenne for The Wall Street Journal. “The latest version of the robot has a 96% success rate at finding and picking up objects in a lab setting, including clothes and household items,” writes Morenne. “In the future, this home helper could also retrieve a specific wrench or screwdriver from a toolbox and assist a human in assembling a piece of furniture.”

Axios

Axios reporter Bryan Walsh spotlights how MIT researchers have developed a new way for chemical signals in spinach leaves to transmit emails. “The system could help provide an early warning system for explosives or pollution, but really, we just want to know what the spinach are thinking,” writes Walsh.

Fast Company

Fast Company reporter Adele Peters spotlights Prof. Michael Strano’s work exploring how to embed nanoparticles into plant leaves, as part of an effort to see if they could serve as sensors. “We started asking the question, can we make living plants to do some of the functions that humans do by stamping things out of plastic and circuit boards—things that go into landfills?” says Strano.

Guardian

MIT researchers have developed a way to embed spinach leaves with sensors, which would allow them to serve as sensors that could monitor groundwater for contaminates, reports The Guardian. “Plants are very environmentally responsive,” explains Prof. Michael Strano. “If we tap into those chemical signaling pathways, there is a wealth of information to access.”

Economist

Prof. Fadel Adib has created a new underwater device that not only broadcasts and receives sound, but is also powered by sound, reports The Economist. In the future, Adib and his colleagues hope the device could be used to “transmit information about water temperature, acidity and salinity.”