Skip to content ↓


Synthetic biology

Download RSS feed: News Articles / In the Media / Audio

Displaying 16 - 30 of 48 news clips related to this topic.

New York Times

In an article for The New York Times about how scientists are developing new ways to treat disease using bacteria, Carl Zimmer highlights how MIT startup Synlogic is developing what could be the first FDA-approved synthetic biology-based medical treatment for a disease called phenylketonuria.


MIT spinout Ginkgo Bioworks is highlighted on the 2018 CNBC Disruptor 50 list, reports CNBC’s Andrew Zaleski. Zaleski notes that Ginkgo Bioworks, “has developed an automated process for combining genetic parts that has made it the largest designer of printed DNA in the world. That breakthrough has positioned the start-up to change the face of a variety of industries.”


Led by Prof. Tim Lu, Senti Biosciences has received $53 million in venture capital funding to launch their startup that will focus on cancer therapies, writes Jonathan Shieber for TechCrunch. Ideally, these therapies “are able to be controlled (programmed) at the cellular level and respond to conditions in a variety of ways,” Shieber explains.


MIT spinout Ginkgo Bioworks has not only maintained its founding members, but also recently raised $275 million from investors, writes Matthew Herper for Forbes. Herper predicts that excitement surrounding synthetic biology companies will continue because “private money is getting excited about the idea of designing biology.” 


MIT researchers have developed a new technique to 3-D print genetically engineered bacteria into a variety of shapes and forms, reports Karen Hao for Quartz. The technique could eventually be used to develop such devices as, “an ingestible living robot that secretes the correct drug when it detects a tumor.”


MIT engineers have developed a method to 3-D print living cells into tattoos and 3-D structures, reports Danny Paez for Inverse. Paez explains that the researchers believe the technique, “could possibly be used to create a ‘living computer,’ or a structure made up of living cells that can do the stuff your laptop can.”

Co.Design reporter Katharine Schwab writes that MIT researchers have developed a tattoo made of living cells that activate when exposed to different kinds of stimuli. Schwab explains that in the future the tattoos could be designed, “so that they respond to environmental pollutants or changes in temperature.”


Prof. Timothy Lu speaks with STAT reporter Eric Boodman about his work trying to harness bacteria to treat disease. Lu notes that his lab is also currently working on, “building these genetic circuits for therapeutic applications, but instead of targeting bacteria, we’ve been focused on using human cells.”

The Economist

The Economist writes about new research from Prof. Chris Voigt, in which “he and his colleagues demonstrate how to control customised cells with coloured light.”

BBC News

BBC News reporter Roland Pease explores the burgeoning field of synthetic biology. “I think what makes synthetic biology interesting is that it's bringing together engineers and physicists with molecular biologists to model, design, and build molecular components that can then be used to rewire and reprogram living cells for a variety of applications,” explains Prof. James Collins. 


STAT reporter Eric Boodman writes that MIT researchers have engineered living materials that glow when they detect certain chemicals. Boodman notes that the researchers hope the living sensors “could at some point be used to pick up dangerous toxins or the chemical signs of disease.”

United Press International (UPI)

Researchers at MIT have designed a new living material infused with cells that could one day be used as a wearable sensor, writes Brooks Hays for UPI. The researchers used the new material to “design gloves and bandages that light up when they come in contact with target chemicals.”

The Atlantic

MIT researchers have developed a new technique for making vaccines using freeze-dried cells, reports Ed Yong for The Atlantic. Yong explains that in addition to producing medicines, the technique provides a new way of “detecting important diseases, like Zika and Ebola, without relying on laboratories or sequencing machines.”


Eric Boodman writes for STAT that MIT researchers have developed a technique to produce biopharmaceuticals in remote locations. “Instead of making the drugs and then trying to keep them refrigerated over thousands of miles,” Boodman writes, the researchers, “want to give people the ingredients. These components don’t require refrigeration, and the instructions are as simple as they come: Just add water.”

Boston Globe

MIT researchers have developed a new way to record the activities of human cells, reports Kevin Hartnett for The Boston Globe. “Most of the studies we do to understand diseases like cancer and Alzheimer’s involve studying cells in a dish. We’re interested in understanding how cells function in their natural environments,” explains Prof. Timothy Lu.