Skip to content ↓

Topic

Space

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 728 news clips related to this topic.
Show:

Forbes

MIT researchers have discovered that increased greenhouse gas emissions in the Earth’s upper atmosphere can “potentially cause catastrophic satellite collision in low-Earth orbit,” reports Bruce Dorminey for Forbes. “When the thermosphere contracts, the decreasing density reduces atmospheric drag — a force that pulls old satellites and other debris down to altitudes where they will encounter air molecules and burn up,” Dorminey explains. “Less drag therefore means extended lifetimes for space junk, which will litter sought-after regions for decades and increase the potential for collisions in orbit.”  

Associated Press

Associated Press reporter Seth Borenstein writes that MIT scientists have found that climate change could “reduce the available space for satellites in low Earth orbit by anywhere from one-third to 82% by the end of the century, depending on how much carbon pollution is spewed.” Graduate student William Parker explains: “We rely on the atmosphere to clean up our debris. There’s no other way to remove debris. It’s trash. It’s garbage. And there are millions of pieces of it.”

ABC News

A new study by MIT researchers finds that “climate change could threaten the future use of satellites and significantly reduce the number of spacecraft that can safety orbit Earth,” reports Julia Jacobo for ABC News. The researchers found “global warming is causing space debris to linger above the planet for longer periods of time, leaving less space for functioning satellites and posing a growing problem for the long-term use of Earth’s orbital space,” Jacobo explains. “Reducing greenhouse gas emissions doesn't just help us on Earth, it also has the potential to protect us from long-term sustainability issues in space,” explains graduate student William Parker. 

Gizmodo

A study by MIT scientists has found that increased greenhouse gas emissions will shrink the Earth’s upper atmosphere causing a “drop in the satellite-carrying capacity of low Earth orbit,” repots Passant Rabie for Gizmodo. “Without an atmosphere, most space debris would remain in orbit indefinitely,” Parker said. “As the atmosphere thins, debris lingers longer, increasing the risk to active satellites. With the growing consequences of space debris, we can accommodate fewer debris-generating events.”

The Verge

Researchers at MIT have found that climate change could raise the risk of satellite collisions, reports Justine Calma for The Verge. “We’ve really reached the end of that era of ‘space is big,’ and I think we should stop saying that,” says graduate student, William Parker. “People don’t realize that the space sustainability issue is really an issue that impacts them directly.”

WBZ Radio

Ariel Ekblaw, principal investigator for the “To the Moon to Stay” mission and a visiting scientist at the MIT Media Lab, speaks with Chaiel Schaffel of WBZ News Radio about the three payloads MIT engineers built for a recent mission to the moon. Of the AstroAnt rover that Ekblaw and her team developed for spacecraft assembly and external servicing, she explains: "What we want to do in the future is send hundreds or thousands that will crawl on the outside of space stations, maybe crawl on the outside of a lunar habitat, and do the inspections that would be really risky for humans to do."

The New York Times

Researchers at MIT have sent three payloads into space, including the AstroAnt, a small robotic device developed to help monitor spaceship conditions, reports Kenneth Chang for The New York Times. The AstroAnt rover is about the size of a “Hot Wheels” toy car and can measure a lunar rover’s temperature and communicate via a wireless Bluetooth connection. “MIT researchers envision that swarms of AstroAnts could be used to perform various tasks in space,” Chang explains. 

Orlando Sentinel

Orlando Sentinel reporter Richard Tribou spotlights the AstroAnt, a small robotic device developed by MIT researchers to monitor spaceship conditions during lunar missions. The device can wheel around the roof of a lunar rover “to take temperature readings and monitor its operation.”  

The Guardian

MIT researchers developed a small robotic rover called the AstroAnt and a depth-mapping camera for use in monitoring spaceship conditions during space missions, reports Richard Luscombe for The Guardian. The AstroAnt is designed to “eventually assist in diagnostic and repair tasks for spacecraft during lunar missions,” explains Luscombe.

Forbes

Prof. Sara Seager and postdoctoral fellow Iaroslav Iakubivskyi have designed Phainoterra, an imaginary planet “with a habitable sulfuric acid-based biochemistry” using “extensive scientific research and cross-checking against known physical precepts,” reports Leslie Katz for Forbes. The creation of Phainoterra is a part of “Proxima Kosmos, a new project that unites scientists, including one from NASA, with designers and sci-fi writers to create a speculative solar system consistent with the laws of astronomy and physics.” 

The Boston Globe

Boston Globe reporter Hiawatha Bray spotlights how MIT researchers developed a thumb-sized rover and a depth-mapping camera, technologies that will be used on a mission to the south pole of the Moon. The mini rover, dubbed AstroAnt, could one day be used to “patrol the exteriors of lunar probes, satellites, or space stations. Some might use cameras to spot meteorite damage, while others could apply sealants to prevent air or fuel leaks.”

Salon

Prof. Richard Binzel speaks with Salon reporter Matthew Rosza about his work creating the Torino Impact Hazard Scale, which measures the threat posed by space rocks. Previous measurements expressed “themselves in different ways, and that could be very confusing to the public,” says Binzel. “This was the motivation for finding a common communication system, a common scale that we could put into context any newly discovered object.” 

USA Today

USA Today reporter Eric Lagatta spotlights how MIT engineers and scientists are sending three payloads into space, on a course set for the Moon’s south polar region. The payload includes a mini, thumb-sized rover dubbed “AstroAnt” that the MIT researchers designed to help monitor the larger space vehicle. “AstroAnt is designed to inspect external surfaces of spacecraft, and will also collect thermal data and measurements while the rover explores,” writes Lagatta. 

CNN

Prof. Richard Binzel discusses how the risk posed by asteroid 2024 YR4 has now been significantly reduced based off new information gathered on the asteroid’s trajectory, reports Ashley Strickland for CNN. The rapid de-escalation in risk is thanks to the “unsung, meticulous work by astronomers” who conducted a steady stream of follow-up observations of the space rock using telescopes across the globe,” Binzel explains. “I’m pleasantly surprised that we could reduce the probability numbers so quickly.” 

Bloomberg

Prof. Richard Binzel speaks with Bloomberg reporter F.D. Flam about tracking asteroid 2024 YR4. “It might seem like things are getting more dangerous or more scary, but what's really happening is we're making ourselves more and more secure,” says Binzel.