Skip to content ↓

Topic

Space exploration

Download RSS feed: News Articles / In the Media / Audio

Displaying 31 - 45 of 301 news clips related to this topic.
Show:

Interesting Engineering

MIT astronomers measured a black hole’s spin for the first time by tracking the X-ray flashes produced by a black hole following a tidal disruption event, reports Interesting Engineering’s Mrigakshi Dixit. “The spin value of a black hole tells us about how it evolved over the age of the universe,” explains Research Scientist Dheeraj Pasham. 

Popular Science

MIT astronomers have found a new way to measure how fast a black hole spins, observing the aftermath of a black hole tidal disruption event with a telescope aboard the International Space Station, reports Laura Baisas for Popular Science. “The only way you can do this is, as soon as a tidal disruption event goes off, you need to get a telescope to look at this object continuously, for a very long time, so you can probe all kinds of timescales, from minutes to months,” said Research Scientist Dheeraj Pasham.


 

Gizmodo

Astronomers at MIT and elsewhere have determined how to measure the spin of a nearby supermassive black hole using a new calculation method, reports Isaac Schultz for Gizmodo. The team “managed to deduce a supermassive black hole’s spin by measuring the wobble of its accretion disk after a star has been disrupted—a polite word for torn up—by the gigantic object,” explains Schultz. “They found the black hole’s spin was less than 25% the speed of light—slow, at least for a black hole.” 

Newsweek

MIT researchers have developed a wearable backpack with spider-like limbs to help astronauts maintain stability in space, reports Jess Thomson for Newsweek. The new technology, called Supernumerary Robotic Limbs (SuperLimbs), “could be crucial in future missions to the moon, where gravity is only a sixth of that on Earth and astronauts may struggle to clamber up again after a fall due to their unwieldy space suits,” explains Thomson. 

CNN

MIT astronomers have discovered an exoplanet that is 50% bigger than Jupiter, but still the second lightest planet ever found, with a density similar to cotton candy,” reports Leah Asmelash for CNN. The planet could provide a useful window into how puffy planets form. “The bigger a planet’s atmosphere, the more light can go through,” Prof. Julien de Wit explains. “So it’s clear that this planet is one of the best targets we have for studying atmospheric effects. It will be a Rosetta Stone to try and resolve the mystery of puffy Jupiters.”

TechCrunch

Researchers at MIT have developed SuperLimbs, a pair of wearable robotic limbs that “can physically support an astronaut and lift them back on their feet after a fall,” reports Brain Heater for TechCrunch. “The system, which is still in the prototype phase, responds directly to the wearer’s feedback,” writes Heater. “When sitting or lying down, it offers a constructive support to help them get back up while expending less energy — every extra bit helps in a situation like this.”

USA Today

Researchers from MIT and elsewhere have discovered a celestial body, which has been called “the second lightest planet ever discovered,” reports Eric Lagatta for USA Today. “The star-orbiting exoplanet outside of our solar system is about seven times less massive than Jupiter, which is why astronomers compare its low density to cotton candy,” Lagatta explains. 

The Guardian

Researchers at MIT and elsewhere have uncovered a new “earth-sized planet orbiting a small, cool star that is expected to shine for 100 times longer than the sun,” reports Ian Sample for The Guardian. The planet is “55 light years from Earth and was detected as it passed in front of its host star, an ultra-cool red dwarf that is half as hot as the sun and 100 times less luminous,” writes Sample. 

Newsweek

MIT astronomers have discovered an exoplanet with a density similar to cotton candy, reports Newsweek’s Jess Thomson. The planet, “named WASP-193b, is the second-least dense exoplanet ever found, with a density of around 0.059 grams per cubic centimeter, or 3.68 pounds per cubic foot,” Thomson explains. “This makes it about 7 times less dense than our neighboring planet Jupiter, despite being 50 percent larger in size, and about 1 percent the density of our own planet.”

Associated Press

An international team of astronomers, including scientists from MIT, discovered an exoplanet with an “exceedingly low density for its size,” reports Marcia Dunn for the Associated Press. The planet “is ideal for studying unconventional planetary formation and evolution,” explains Dunn. 

Astronomy

Prof. Thomas Levenson speaks with David Chandler of Astronomy about the potential for a Planet Nine in our solar system and the soon-to-be opened Vera C. Rubin Observatory in Chile. “With the right observatory, we can see things that will help us confirm or deny, “says Levenson, “and that observatory is almost at hand, it’s just set to go, and that’s very exciting.”

Scientific American

Using the James Webb Space Telescope, postdoc Rohan Naidu will be studying “some of the particularly large and red galaxies, [called little red dots,] that appear much brighter and more massive than theorists have expected galaxies at this epoch to be,” reports Jonathan O’Callaghan for Scientific American. Naidu’s “program will seek to settle the debat about little red dots once and for all,” writes O’Callaghan.

CBS

Christina “Chris” Birch PhD '15 is among NASA’s newest class of astronauts, reports Norah O’Donnell for CBS Evening News. “These new astronauts could one day be part of the team that brings the first woman and first person of color to the surface of the moon and beyond.”

Science Friday

Prof. Danielle Wood speaks with Science Friday guest host Sophie Bushwick about the importance of space law and the rules of space. “One of the things that is so helpful to think about when trying to define space law is the fact that space law, in many ways, happens at the national level and is negotiated at the international level, so we can say that the United States has both ratified and signed the outer space treaty which means it is also U.S law,” explains Wood. “I think that’s really key to keeping track of what it means for international law to be binding and I think that’s key to saying space law is meaningful especially because countries make it domestic law.”

Science

Prof. Danielle Wood speaks with Science news intern Sean Cummings about how space exploration and research can benefit everyone. “It’s great to think about what it means for space to benefit everyone,” says Wood. “I think there are two dimensions to ask: I would first ask ‘how could I redesign space systems that were not designed for everyone but could be fixed to make them more effective?’ and the second would be ‘what about the new things we haven’t built yet?’”