Skip to content ↓

Topic

Solar

Download RSS feed: News Articles / In the Media / Audio

Displaying 16 - 30 of 115 news clips related to this topic.
Show:

Fast Company

MIT researchers have developed paper-thin solar cells that can adhere to nearly any material, reports Elissaveta M. Brandon for Fast Company. “We have a unique opportunity to rethink what solar technology looks like, how it feels, and how we deploy it,” says Prof. Vladimir Bulović.

Mashable

MIT researchers have developed an ultra-thin solar panel that can adhere to any surface for access to immediate power, reports Jules Suzdaltsev for Mashable. “These ultra-portable panels can make the difference in remote regions where emergencies require more power,” writes Suzdaltsev.

Boston.com

Researchers at MIT have developed a new ultrathin solar cell that can adhere to different surfaces providing power on the go, reports Clara McCourt for Boston.com. “The new technology surpasses convential solar panels in both size and ability, with 18 times more power per kilogram at one-hundredth the weight,” writes McCourt.

Popular Science

Popular Science reporter Andrew Paul writes that MIT researchers have developed a new ultra-thin solar cell that is one-hundredth the weight of conventional panels and could transform almost any surface into a power generator. The new material could potentially generate, “18 times more power-per-kilogram compared to traditional solar technology,” writes Paul. “Not only that, but its production methods show promising potential for scalability and major manufacturing.”

Physics World

Physics World has named two research advances by MIT researchers to its list of the Top 10 Breakthroughs of the Year. Prof. Gang Chen and his colleagues were selected for their work “showing that cubic boron arsenide is one of the best semiconductors known to science.” Prof. Asegun Henry, grad student Alina LaPotin and their colleagues were nominated for “constructing a thermophotovoltaic (TPV) cell with an efficiency of more than 40%.”

This Old House

Ross Trethewey, co-host of This Old House, visits Prof. Vladimir Bulović, director of MIT.nano, to learn more about the future of solar technology, including an electricity-generating film that can be applied to windows and other materials. “Dramatic advancements are on the horizon,” says Bulović. “We can make solar cells that don’t weigh very much at all so deployment of them on top of your roof could be as simple as unrolling a carpet and stapling it to the roof with a plug. Maybe your windows will be turned into solar cells.” 

WBUR

WBUR reporter Bruce Gellerman spotlights a new report by MIT Energy Initiative (MITEI) researchers that emphasizes the importance of developing and deploying new ways to store renewable energy in order to transition to clean energy. “There are a variety of technologies and if we can develop [them] and drive those costs down, it could make getting to net-zero or zero in the electricity sector more affordable,” says Prof. Robert Armstrong, MITEI director.

The Boston Globe

A new report by researchers from MIT’s Energy Initiative (MITEI) underscores the feasibility of using energy storage systems to almost completely eliminate the need for fossil fuels to operate regional power grids, reports David Abel for The Boston Globe. “Our study finds that energy storage can help [renewable energy]-dominated electricity systems balance electricity supply and demand while maintaining reliability in a cost-effective manner,” says Prof. Robert Armstrong, director of MITEI.

Gizmodo

Researchers at MIT have built a highly efficient thermophotovoltaic cell that converts incoming photons to electricity, reports Kevin Hurler for Gizmodo. “We developed this technology—thermal batteries—because storing energy as heat rather than storing it electrochemically is 10 to 100 times cheaper," explains Prof. Asegun Henry. 

Bloomberg

Bruce Anderson ’73, founder and CEO of MIT spinout 247 Solar, speaks with Bloomberg Baystate Business Hour host Janet Wu about the power of solar energy and growing climate concerns for the future. “We are facing dire circumstances here,” says Anderson. “We have no clue what the climate’s tipping point is where it all of sudden goes in a direction that we cannot recover from, no matter how much carbon we remove from the air."

Science

A team of researchers from MIT and the National Renewable Energy Laboratory successfully reached a 30% jump in thermophotovoltaic (TPV) efficiency, reports Robert F. Service for Science. “[TPV] is a semiconductor structure that concerts photons emitted from a heat source to electricity, just as a solar cell transforms sunlight into power,” explains Service.

Mashable

Mashable reporter Emmett Smith spotlights how MIT researchers have developed a new technique to clear dust from solar panels without using water. The new method uses “electrostatic repulsion, where an electrode that glides above the panel electrically charges dust particles and subsequently repels them.”

Popular Science

MIT engineers have developed a new contactless method to clean solar panels that could save billions of gallons of water, reports Anuradha Varanasi for Popular Science. “I was amazed at the sheer amount of pure water that is required for cleaning solar panels,” says Prof. Kripa Varanasi. “The water footprint of the solar industry is only going to grow in the future. We need to figure out how to make solar farms more sustainable.”

Tech Briefs

Prof. Kripa Varanasi, graduate student Sreedath Panath, and a team of researchers are developing a water-free way to clear dust off of solar panels, reports Billy Hurley and Ed Brown for Tech Briefs. “Water is such a precious commodity, and people need to be careful about how to make use of this resource that we have,” says Varanasi. “The solar industry really needs to keep this in mind; we don’t want to be solving one problem and creating another.”

The Daily Beast

MIT researchers have developed a new water-free system that uses static electricity to clear dust from solar panels, reports Miriam Fauzia for The Daily Beast. “By using this technique, we can recover up to 95 percent of a solar panel’s power output,” explains graduate student Sreedath Panat.