Skip to content ↓

Topic

Semiconductors

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 15 news clips related to this topic.
Show:

Wired

A new report co-authored by MIT researchers finds that the “US lead in advanced computing has declined significantly over the past five years—especially when measured against China,” writes Will Knight for Wired. The report’s authors emphasize that the US “needs to make sure that the CHIPS Act spending reflects the importance of developing novel ideas in advanced computing, as opposed to just propping up existing technologies,” Knight notes.

The Hill

Writing for The Hill, President L. Rafael Reif emphasizes the importance of “enabling universities to undertake the use-inspired research that will seed future innovations.” He adds: “To secure national leadership and prosperity over time, the U.S. needs to be the birthplace of the new ideas that will determine the future — including the future of semiconductor technology, design, and manufacturing.”

Physics World

Physics World has named two research advances by MIT researchers to its list of the Top 10 Breakthroughs of the Year. Prof. Gang Chen and his colleagues were selected for their work “showing that cubic boron arsenide is one of the best semiconductors known to science.” Prof. Asegun Henry, grad student Alina LaPotin and their colleagues were nominated for “constructing a thermophotovoltaic (TPV) cell with an efficiency of more than 40%.”

NBC News

NBC News reporter Kimmy Yam notes that months after having all charges he faced under the “China Initiative” dismissed, Prof. Gang Chen and his colleagues have discovered a new material that can perform better than silicon. "The discovery could have far-reaching effects, as silicon is currently among the most widely used semiconductors, making up the foundation of modern technology from computer chips to smartphones," writes Yam. 

The Hill

Writing for The Hill, President L. Rafael Reif and Stephen A. Schwarzman, chairman, CEO & co-founder of Blackstone, praise the new “CHIPS and Science Act” and highlight the need for further action on the ‘Science’ part of the law. “We urge Congress to capitalize on this bipartisan momentum and appropriate the funds that the bill authorizes,” they write. The nation's "future competitiveness, prosperity and security all rely on technological leadership. To sustain its strength in the long term, the U.S. needs to invent and manufacture the next new technologies.”

VICE

Researchers at MIT believe they have found a new semiconductor that's better than silicon, which could open the doors to potentially faster and smaller computer chips in the future, reports Rachel Cheung for Vice. “Cubic boron arsenide has significantly higher mobility to both electronics and their positively charged counterparts than silicon, the ubiquitous semiconductor used in electronics and computers,” explains Cheung.

Fortune

Researchers at MIT and other institutions proved “that cubic boron arsenide performs better than silicon at conducting heat and electricity,” reports Nicholas Gordon for Fortune. “The new material may help designers overcome the natural limits of current models to make better, faster, and smaller chips,” writes Gordon.

Science Friday

Prof. Jesús del Alamo speaks with Ira Flatow of NPR’s Science Friday about the importance of the CHIPS Act and the pressing need to invest in semiconductor manufacturing in the U.S. “There is a deep connection between leading-edge manufacturing and innovation,” says del Alamo. “Whoever gets the most advanced technology first in the marketplace is going to rip off the greatest profits, and as a result is going to be able to invest into innovation at a greater level and therefore be able to move faster than their competitors.”

NPR

Prof. Jesús del Alamo speaks with Ann Fisher of WOSU’s All Sides with Ann Fisher about the importance of supporting domestic chip manufacturing in the U.S., and the need to help encourage students to pursue careers in the semiconductor industry. “Universities and colleges train over 50% of the semiconductor workforce,” says del Alamo, “and so investing in education, investing in the infrastructure, both human but also physical infrastructure that supports education and research, is really critical in the long run.” 

EdScoop

The MIT AI Hardware Program seeks to bring together researchers from academia and industry to “examine each step of designing and manufacturing the hardware behind AI-powered technologies,” reports Emily Bamforth for EdScoop. “This program is about accelerating the development of new hardware to implement AI algorithms so we can do justice to the capabilities that computer scientists are developing,” explains Prof. Jesús del Alamo.

The Register

The MIT AI Hardware Program is aimed at bringing together academia and industry to develop energy-optimized machine-learning and quantum-computing systems, reports Katyanna Quach for The Register. “As progress in algorithms and data sets continues at a brisk pace, hardware must keep up or the promise of AI will not be realized,” explains Professor Jesús del Alamo. “That is why it is critically important that research takes place on AI hardware."

Bloomberg

Prof. Jesús del Alamo speaks with Bloomberg Radio’s Janet Wu about a new report by MIT researchers that explores how the U.S. can regain leadership in semiconductor manufacturing and production. “Leadership in microelectronics is really critical for economic progress and also security concerns,” says del Alamo.

CNET

A new white paper by MIT researchers underscores the importance of regaining the U.S.’s innovation leadership in the area of semiconductor manufacturing and calls for increased investment at the research level to help advance this field, reports Stephen Shankland for CNET. "The hollowing out of semiconductor manufacturing in the US is compromising our ability to innovate in this space and puts at risk our command of the next technological revolution,” write the report’s authors. “To ensure long-term leadership, leading-edge semiconductor manufacturing in the US must be prioritized and universities activities have to get closer to it."

Optics.org

Optics & Photonics News reporter Patricia Daukantas spotlights how a team of researchers from the Singapore-MIT Alliance for Research and Technology (SMART) has uncovered a way to generate long wavelength light using intrinsic defects in semi-conducting materials. “The new method raises the possibility of future CMOS-compatible LEDs that give off the full spectrum of visible light, writes Daukantas, “without the need for phosphors that generate excess heat and shorten the diodes’ lifespan.”

The Boston Globe

Prof. Yoel Fink speaks with Scott Kirsner at The Boston Globe about the Advanced Functional Fabrics of America and the future of smart fabrics. “The basic ingredient of modern technology is semiconductors,” says Fink, CEO of AFFOA. “And the reason there aren’t any smart fabrics out there right now is nobody had figured out how to put a semiconductor into fibers.”