Skip to content ↓

Topic

School of Science

Download RSS feed: News Articles / In the Media / Audio

Displaying 1096 - 1110 of 1756 news clips related to this topic.
Show:

Gizmodo

Gizmodo reporter Ryan Mandelbaum writes that by studying ancient quasars, MIT scientists have uncovered evidence supporting quantum entanglement, the concept that two particles can become linked despite their distance in space and time. “We’ve outsourced randomness to the furthest quarters of the universe, tens of billions of light years away,” says Prof. David Kaiser.

Space.com

Space.com reporter Chelsea Gohd writes that MIT researchers have used the light emitted by two ancient quasars to provide evidence of quantum entanglement, the theory that two particles can become linked across space and time. The researchers used ancient quasars to see if, “the correlation between particles can be explained by classical mechanics stemming from earlier than 600 years ago.”

Motherboard

Writing for Motherboard, Daniel Oberhaus highlights how MIT researchers have used light emitted by quasars billions of years ago to confirm the existence of quantum entanglement. Oberhaus explains that the findings suggest entanglement occurs “because if it didn’t exist the universe would somehow have to have ‘known’ 7.8 billion years ago that these MIT scientists would perform these experiments in 2018.”

Space.com

MIT researchers have discovered hundreds of galaxies that were hidden by light being emitted from a supermassive black hole, reports Kasandra Brabaw for Space.com. “The black hole, a type known as a quasar, sits 2.4 billion light-years from Earth and is so bright that astronomers have assumed it was alone in its area of space for decades,” Brabaw explains.

Fox News

FOX News reporter James Rogers writes that MIT researchers have detected a new galaxy cluster that had been obscured by the bright light emitted from a supermassive black hole.  “Located just 2.4 billion light-years from Earth, the cluster consists of hundreds of individual galaxies,” Rogers explains.

NPR

Graduate student Vishal Patil speaks with NPR’s Rebecca Hersher about his work determining how to snap dry spaghetti in two. Patil found that, “when you twist it, you don't have to bend it as much before it breaks. When there's less bending in it, the snap-back — as the spaghetti tries to become a straight rod again — is weakened, so that no more fractures can occur.”

The Washington Post

Using mathematical modeling, a mechanical fracture device and a camera, MIT researchers found that dry spaghetti can be split into two pieces, reports Allyson Chiu for The Washington Post. The findings could be applied to studying fracturing, explains graduate student Vishal Patil, who notes that, “there’s still a lot to be discovered about fracture control, and this is an example of fracture control.”

Today Show

TODAY reporter Alessandra Bulow speaks with Prof. Jörn Dunkel about how he and his colleagues figured out how to snap a strand of spaghetti without it shattering into many pieces. Bulow notes that the noodles must be bent and twisted at the same time, and “you have to twist really strongly,” explains Dunkel.

Boston Globe

Prof. Maria Zuber, MIT’s vice president for research, speaks with Boston Globe reporter Jon Marcus about the growing interest in space and exploration in America. “Discovery, pure and simple, is truth. It’s pure. It’s a beautiful thing,” says Zuber, who has directed several NASA missions and chairs the Jet Propulsion Laboratory Advisory Council.

United Press International (UPI)

UPI reporter Brooks Hays writes that MIT researchers have successfully snapped a strand of spaghetti into only two pieces, solving an age-old mystery about why dry spaghetti noodles typically break into many pieces. “Scientists believe the discovery could help material scientists control for the fracturing patterns in other materials,” explains Hays.

Boston Globe

A study by MIT researchers shows that by twisting and bending dry spaghetti past a certain angle, the noodles can be successfully split into two pieces, reports Travis Anderson for The Boston Globe. Anderson explains that the breakthrough, “could have implications far beyond the kitchen,” and could shed light on crack formation and how to control fractures in rod-like materials.

Gizmodo

Gizmodo reporter Ryan Mandelbaum highlights how MIT researchers used data from the CLAS particle accelerator and detector to determine that neutron stars are heavily influenced by protons. Prof. Or Hen explains that the findings show that, “protons are much more important in determining the properties of neutron stars than we thought.”

New Scientist

New Scientist reporter Frank Swain writes that MIT researchers have snapped dry spaghetti into two pieces, shedding light on the “conditions under which similar materials, such as steel rods in buildings, fracture under stress.” Prof. Jörn Dunkel explains that the spaghetti challenge has perplexed scientists for years, as it’s “one of those intrinsically interesting things that goes on around us.”

ABC News

MIT researchers have found that holding back-and-forth conversations with young children may help boost a child’s language development, report Drs. Edith Bracho-Sanchez and Richa Kalra for ABC News. The study found that conversations created “stronger connections between the brain regions responsible for comprehension and production of speech.”

Reuters

Reuters reporter Lisa Rapaport writes about a new study that shows back-and-forth conversations between adults and young children could help build speech and language skills. “We found that the most relevant component of children’s language exposure is not the sheer number of words they hear, but the amount of back-and-forth adult-child conversation they experience,” explains research affiliate Rachel Romeo.