Skip to content ↓

Topic

School of Science

Download RSS feed: News Articles / In the Media / Audio

Displaying 901 - 915 of 1556 news clips related to this topic.
Show:

NPR

Graduate student Vishal Patil speaks with NPR’s Rebecca Hersher about his work determining how to snap dry spaghetti in two. Patil found that, “when you twist it, you don't have to bend it as much before it breaks. When there's less bending in it, the snap-back — as the spaghetti tries to become a straight rod again — is weakened, so that no more fractures can occur.”

The Washington Post

Using mathematical modeling, a mechanical fracture device and a camera, MIT researchers found that dry spaghetti can be split into two pieces, reports Allyson Chiu for The Washington Post. The findings could be applied to studying fracturing, explains graduate student Vishal Patil, who notes that, “there’s still a lot to be discovered about fracture control, and this is an example of fracture control.”

Today Show

TODAY reporter Alessandra Bulow speaks with Prof. Jörn Dunkel about how he and his colleagues figured out how to snap a strand of spaghetti without it shattering into many pieces. Bulow notes that the noodles must be bent and twisted at the same time, and “you have to twist really strongly,” explains Dunkel.

Boston Globe

Prof. Maria Zuber, MIT’s vice president for research, speaks with Boston Globe reporter Jon Marcus about the growing interest in space and exploration in America. “Discovery, pure and simple, is truth. It’s pure. It’s a beautiful thing,” says Zuber, who has directed several NASA missions and chairs the Jet Propulsion Laboratory Advisory Council.

United Press International (UPI)

UPI reporter Brooks Hays writes that MIT researchers have successfully snapped a strand of spaghetti into only two pieces, solving an age-old mystery about why dry spaghetti noodles typically break into many pieces. “Scientists believe the discovery could help material scientists control for the fracturing patterns in other materials,” explains Hays.

Boston Globe

A study by MIT researchers shows that by twisting and bending dry spaghetti past a certain angle, the noodles can be successfully split into two pieces, reports Travis Anderson for The Boston Globe. Anderson explains that the breakthrough, “could have implications far beyond the kitchen,” and could shed light on crack formation and how to control fractures in rod-like materials.

Gizmodo

Gizmodo reporter Ryan Mandelbaum highlights how MIT researchers used data from the CLAS particle accelerator and detector to determine that neutron stars are heavily influenced by protons. Prof. Or Hen explains that the findings show that, “protons are much more important in determining the properties of neutron stars than we thought.”

New Scientist

New Scientist reporter Frank Swain writes that MIT researchers have snapped dry spaghetti into two pieces, shedding light on the “conditions under which similar materials, such as steel rods in buildings, fracture under stress.” Prof. Jörn Dunkel explains that the spaghetti challenge has perplexed scientists for years, as it’s “one of those intrinsically interesting things that goes on around us.”

ABC News

MIT researchers have found that holding back-and-forth conversations with young children may help boost a child’s language development, report Drs. Edith Bracho-Sanchez and Richa Kalra for ABC News. The study found that conversations created “stronger connections between the brain regions responsible for comprehension and production of speech.”

Reuters

Reuters reporter Lisa Rapaport writes about a new study that shows back-and-forth conversations between adults and young children could help build speech and language skills. “We found that the most relevant component of children’s language exposure is not the sheer number of words they hear, but the amount of back-and-forth adult-child conversation they experience,” explains research affiliate Rachel Romeo.

STAT

Writing for STAT, Justin Chen spotlights graduate student Eugene Lee’s work mapping the brain of worms in an effort to gain a better understanding of how worms, and animals in general, learn. “With science,” says Lee, “you might not know exactly where the research will take you, but you trust that when you arrive all the effort will have been worth it.”

STAT

STAT reporter Orly Nadell Farber writes about a new study by MIT researchers that shows glaucoma might be caused by T-cells, an integral component of the human body’s immune system, attacking retinal cells. Farber explains that, “this discovery could unlock a critical new door for treatment options.”

United Press International (UPI)

A new study by MIT researchers provides evidence that glaucoma may be caused by an autoimmune disease, according to a HealthDay News piece published by UPI. “Further research will try to determine whether other parts of the immune system play a role in glaucoma, and whether autoimmunity is a factor in degenerative brain diseases.”

Boston Globe

Boston Globe reporter Martin Finucane writes that MIT researchers have identified the region of the brain responsible for generating negative emotions. “The findings could help scientists better understand how some of the effects of depression and anxiety arise, and guide development of new treatments,” Finucane explains.

WBUR

Prof. Aviv Regev speaks with WBUR’s Karen Weintraub about her work exploring human cells. Regev says she was inspired to study the human cell as, “it’s this phenomenal entity that knows how to take many different pieces of information, make very quick and sophisticated decisions, act on them and continue on its way.”