Skip to content ↓

Topic

School of Science

Download RSS feed: News Articles / In the Media / Audio

Displaying 796 - 810 of 1786 news clips related to this topic.
Show:

United Press International (UPI)

UPI reporter Brian Dunleavy writes that MIT researchers have developed a new way to potentially expand sources of biofuel to include straw and woody plants. "Our goal is to extend this technology to other organisms that are better suited for the production of these heavy fuels, like oils, diesel and jet fuel," explains Prof. Gregory Stephanopoulos.

TechCrunch

TechCrunch reporter Devin Coldewey writes that MIT researchers have created a new nanoengineered material that could prove tougher than Kevlar or steel. “Made of interconnected carbon ‘tetrakaidecahedrons,’ the material absorbed the impact of microscopic bullets in spectacular fashion,” writes Coldewey.

TopUniversities.com

Provost Marty Schmidt speaks with TopUniversities.com reporter Chloe Lane about how MIT has maintained its position as the top university in the world on the QS World University Rankings for 10 consecutive years. “I am honored to have been a part of the MIT community for almost 40 years,” says Schmidt. “It’s a truly interdisciplinary, collaborative, thought-provoking place that encourages experimentation and pushes you to expand your mind. I think it’s a wonderful place to call home.”

Forbes

Graduate student John Urschel speaks with Forbes contributor Talia Milgrom-Elcott about how his mother helped inspire his love of mathematics and the importance of representation. “It’s very hard to dream of being in a career if you can’t relate to anyone who’s actually in that field,” says Urschel. “One of my main goals in life as a mathematician is to increase representation of African American mathematicians.”

United Press International (UPI)

UPI reporter Brooks Hays writes that LIGO researchers have cooled a human-scale object to a near standstill. "One of the questions that we might be able to answer is: 'Why do large objects not naturally appear in quantum states?' There are various conjectures for why that might be; some say that gravity -- which acts strongly on larger objects -- might be responsible," explains Prof. Vivishek Sudhir. "We now have a system where some of these conjectures can be experimentally tested.”

Gizmodo

LIGO researchers have nearly frozen the motion of atoms across four mirrors used to detect ripples in space-time, reports Isaac Schultz for Gizmodo. “We could actually use the same capability of LIGO to do this other thing, which is to use LIGO to measure the random jiggling motion of these mirrors—use that information which we have about the motion—and apply a counteracting force, so that you know you would stop the atoms from moving,” says Prof. Vivishek Sudhir.

New Scientist

New Scientist reporter Leah Crane writes that a set of mirrors at LIGO have been cooled to near absolute zero, the largest objects to be brought to this frigid temperature. “The goal of this work is to help explain why we don’t generally see macroscopic objects in quantum states, which some physicists have suggested may be due to the effects of gravity,” writes Crane.

Mashable

Mashable spotlights how MIT’s baseball pitching coach is using motion capture technology to help analyze and teach pitching techniques. Using the technology, Coach Todd Carroll can “suggest real-time adjustments as a player is pitching so that just one session using the technology improves their game.”

CNN

CNN reporter Ashley Strickland writes about how researchers from the CHIME collaboration have announced that they have detected over 500 fast radio bursts (FRBs) using a radio telescope in Canada. "With all these sources, we can really start getting a picture of what FRBs look like as a whole, what astrophysics might be driving these events, and how they can be used to study the universe going forward," explains graduate student Kaitlyn Shin.

Nature

Scientists from the CHIME Collaboration, including MIT researchers, have reported that the radio telescope has detected more than 500 fast radio bursts in its first year of operation, reports Davide Castelvecchi for Nature. The findings suggest that these events come in two distinct types. “I think this really just nails it that there is a difference,” says Prof. Kiyoshi Masui.

The Boston Globe

The CHIME radio telescope has catalogues more than 500 fast radio bursts (FRBs), which could be used to help map the universe, reports Charlie McKenna for The Boston Globe. FRBs are “kind of like lighthouses or sonar pings,” explains graduate student Calvin Leung, “and for the very first time we’ve shown that we can detect them in large enough quantities that you can really use them to make statements like, ‘Oh, the universe is expanding at this rate,’ or ‘This is how much matter there is in the whole universe.’”

Inverse

Inverse reporter Passant Rabie explores how the CHIME radio telescope has identified more than 500 fast radio bursts in its first year of operation, providing clues as to the structure of the universe. “With enough of them, they are going to be the ultimate tool for mapping the universe,” says Prof. Kiyoshi Masui.

The Washington Post

Prof. Eric Lander will be sworn into his new post as director of the White House Office of Science and Technology Policy on a 500-year-old Jewish text, reports Jack Jenkins for The Washington Post. The question of what book to use for the swearing-in ceremony made him think of the choice as “a statement of what’s in my mind and what’s in my heart.”

New Scientist

In an interview with Clare Wilson of New Scientist, Prof. Ed Boyden, one of the co-inventors of the field of optogenetics, discusses how the technique was used to help partially restore vision for a blind patient. “It’s exciting to see the first publication on human optogenetics,” says Boyden.

New York Times

Prof. Ed Boyden speaks with New York Times reporter Carl Zimmer about how scientists were able to partially restore a patient’s vision using optogenetics. “So far, I’ve thought of optogenetics as a tool for scientists primarily, since it’s being used by thousands of people to study the brain,” says Boyden, who helped pioneer the field of optogenetics. “But if optogenetics proves itself in the clinic, that would be extremely exciting.”