Skip to content ↓

Topic

Robotics

Download RSS feed: News Articles / In the Media / Audio

Displaying 91 - 105 of 789 news clips related to this topic.
Show:

CNN

Callie Gade and Nate Bonham of CNN’s Discovery Daily Podcast spotlight how researchers from MIT developed a 3D printed replica of the human heart that can help doctors customize treatments for patients before conducting open heart surgery or other intrusive procedures. “These more patient-specific heart replicas can help future researchers develop and identify treatments for people with unique health problems,” says Gade.

TechCrunch

Pickle Robot, an MIT startup, has developed a container unloading robot, reports Brian Heater for TechCrunch. “Pickle has been single-mindedly focused on the specific problem since its inception, actually beginning life attempting to tackle the even more complex task of loading containers,” explains Heater.

Popular Science

MIT engineers have developed a new technique that enables bug-sized aerial robots to handle a sizeable amount of damage and still fly, reports Andrew Paul for Popular Science. “The new repair techniques could come in handy when using flying robots for search-and-rescue missions in difficult environments like dense forests or collapsed buildings,” writes Paul.

NBC

Dr. Akshay Syal, a medical fellow for NBC News, discusses how MIT researchers have developed a new technique to 3D print custom replicas of the human heart.

Mashable

Mashable visits CSAIL graduate student Gregory Xie to learn about his work with Auxbots, a system of untethered modular robots. “Together in a large assembly,” Xie explains, “we can get very interesting large scale motions of the assembly. These robots are more modular because they’re untethered and the actuation is completely electromechanical.”

Scientific American

Prof. Ritu Raman speaks with Scientific American about her work “building machines that we call bio-hybrid because they're part biological and part made out of synthetic materials. The biological robots that we're building are powered by muscle tissue so that every time the muscle contracts, you could get something that looks like movement.”

Mashable

Postdoc Zach Patterson speaks with Mashable about how he and his colleagues are developing a soft robot inspired by a sea turtle that could potentially "offer a closer look at ocean life and assist in further studying aquatic creatures.” Patterson explains that the robotic turtle is meant to be a “platform for exploring the interaction between soft and rigid materials incorporated into a robotic structure.”

Bloomberg

Bloomberg reporter Tanaz Meghjani writes that MIT researchers created a new system to 3D print a customized replica of the human heart, which could help improve replacement valve procedures. The new system “mimics blood flow and pressure in individual diseased hearts, suggesting a way to predict the effects of various replacements and select the best fit, avoiding potential leakage and failure,” Meghjani writes.

WBUR

MIT engineers have developed a new technique for 3D printing a soft, flexible, custom-designed replica of a patient’s heart, report Gabrielle Emanuel and Amy Sokolow for WBUR. The goal of the research is to “provide realistic models so that doctors, researchers and medical device manufacturers can use them in testing therapies for different types of heart disease,” Emanuel and Sokolow explain.

Mashable

MIT researchers have constructed a mini city to test to safely test algorithms designed for autonomous vehicles, reports Mashable. “The idea of the mini city is that we have lots of cars going at the same time and we can actually test out new algorithms in a safe environment,” says graduate student Noam Buckman.

Scientific American

Prof. Daniela Rus, director of CSAIL, speaks with Scientific American reporter Nora Bradford about recent advancements in the field of soft robotics. “Building soft robots that can work, heal and grow independently could change many areas of human life,” says Rus. “Soft robot hands are enabling a new age for manufacturing.”  

Mashable

Researchers at MIT have developed a drone that can be controlled using hand gestures, reports Mashable. “I think it’s important to think carefully about how machine learning and robotics can help people to have a higher quality of life and be more productive,” says postdoc Joseph DelPreto. “So we want to combine what robots do well and what people do well so that they can be more effective teams.”

Popular Science

Researchers at MIT have developed underwater robotic structures that can contort into different shapes, reports Andrew Paul for Popular Science. “This ability is key in submersible robots, since it allows them to move through the water much more efficiently, as countless varieties of fish do in rivers, lakes, and the open ocean,” explains Paul.

TechCrunch

MIT researchers have developed a new system for creating deformable underwater robots that can be used to build robots of varying shapes and sizes with both hard and soft elements, reports Brian Heater for TechCrunch. “The robot is largely hollow, built of modular voxels that can be assembled to create systems that are rigid in certain directions and soft in others,” Heater explains.