Skip to content ↓

Topic

RNA

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 33 news clips related to this topic.
Show:

NPR

Prof. Li-Huei Tsai, director of the Picower Institute, speaks with NPR host Jon Hamilton about her work identifying a protein called reelin that appears to protect brain cells from Alzheimer's. “Tsai says she and her team are now using artificial intelligence to help find a drug that can replicate what reelin does naturally,” says Hamilton. 

Wired

Prof. Ron Weiss co-founded Strand Therapeutics, a biotech company developing mRNA therapies, reports Emily Mullin for Wired. “The notion is that genetic circuits can really have significant impact on safety and efficacy,” says Weiss. “This begins to really open up the door for creating therapies whose sophistication can match the underlying complexity of biology.”

Nature

MIT researchers have “used an algorithm to sort through millions of genomes to find new, rare types of CRISPR systems that could eventually be adapted into genome-editing tools,” writes Sara Reardon for Nature. “We are just amazed at the diversity of CRISPR systems,” says Prof. Feng Zhang. “Doing this analysis kind of allows us to kill two birds with one stone: both study biology and also potentially find useful things.”

NPR

Researchers at MIT have developed a mobile vaccine printer capable of printing a vaccine onto a patch of microneedles that can be absorbed into the skin without injection, reports Sandra Tsing for NPR. “These printed vaccines could be used in areas that are unable to refrigerate traditional vaccines,” explains Tsing.

Science

MIT researchers have discovered an RNA-guided DNA-cutting enzyme in eukaryotes, reports Science. “The researchers speculate that eukaryotic cells may have gained the newly identified editing genes from transposable elements—so-called jumping genes—they received from bacteria,” writes Science.

Popular Science

MIT researchers have identified a new biological editing system that could “potentially be even more precise than CRISPR gene editing,” reports Laura Baisas for Popular Science. The new system, based on a protein called Fanzor, is “the first programmable RNA-guided system discovered in eukaryotes,” Baisas notes.

CBC News

Principal Research Scientist Ana Jaklenec speaks with CBC host Bob McDonald about her work developing a mobile vaccine printer. The device “can be very important in certain scenarios when you’re trying to bring the ability to vaccinate in areas that might not have the right infrastructure to make vaccines or even to administer vaccines,” says Jaklenec, “so I think the portability is key here.” 

Boston 25 News

Researchers at MIT have developed a new nanoparticle sensor that can detect cancerous proteins through a simple urine test. “The researchers designed the tests to be done on a strip of paper, similar to the at-home COVID tests everyone became familiar with during the pandemic,” writes Lambert. “They hope to make it as affordable and accessible to as many patients as possible.”

AFP

Researchers at MIT have developed a mobile printer that could create microneedle patches for mRNA vaccine delivery. “These "microneedle patches" offer a range of advantages over traditional jabs in the arm, including that they can be self-administered, are relatively painless, could be more palatable to the vaccine-hesitant and can be stored at room temperature for long periods of time,” writes Daniel Lawler for Agence France-Presse.

Genetic Engineering & Biotechnology News

Research scientist Ana Jaklenec spoke with Jonathan Grinstein at Genetic Engineering & Biotechnology News about a new microneedle patch printer she and her colleagues have developed that may one day enable on-demand vaccine manufacturing. “The idea was that you could, in an emergency situation, deploy some of these printers and locally vaccinate the population to prevent the global spread of infection,” says Jaklenec.

The Boston Globe

Jake Becraft PhD ’19 and former postdoctoral associate Tasuku Kitada co-founded Strand Therapeutics, a biotech firm developing mRNA therapies for cancer, reports Ryan Cross for The Boston Globe. They created “a way to activate mRNA in the presence of particular microRNAs – a much more useful application for therapies,” writes Cross. 

The Boston Globe

Researchers at MIT have developed new gene-editing technology that can move large sequences of DNA into the human genome, reports Ryan Cross for The Boston Globe. “The molecular tool gives scientists a new way to completely replace broken genes, paving the way to potential cures for diseases such as cystic fibrosis,” writes Cross.

The Boston Globe

Scientists from MIT, Duke and Stanford have developed a new technique to make gene therapies safer and more effective, reports Ryan Cross for The Boston Globe. “It’s about making these therapies much smarter and programmable,” says Jonathan S. Gootenberg, a research scientist at the McGovern Institute.

The Boston Globe

CAMP4, a startup founded by Prof. Richard Young, is developing a new class of RNA-based therapies to treat genetic diseases, reports Ryan Cross for The Boston Globe. The “startup’s experimental approach will allow it to dial up the output of genes to treat genetic diseases, with an initial focus on a severe form of epilepsy and life-threatening live diseases,” writes Cross.