Skip to content ↓

Topic

Research

Download RSS feed: News Articles / In the Media / Audio

Displaying 2581 - 2595 of 5424 news clips related to this topic.
Show:

Associated Press

Associated Press reporter Lauran Neergaard writes that MIT researchers have created a pea-sized pill that, once swallowed, can deliver medications such as insulin directly to the stomach. “The way this works is it travels down the esophagus in seconds, it’s in the stomach within a few minutes, and then you get the drug,” explains visiting scientist Giovanni Traverso.

STAT

Inspired by the shell of a leopard tortoise, MIT researchers have developed a self-orienting ingestible capsule that can deliver doses of medication to the stomach, writes Megan Thielking for STAT. “If we’re able to deliver large molecules orally, it would not only change drug delivery but also drug discovery,” says Prof. Robert Langer.

Time

A team of MIT researchers has created a tiny ingestible device that deliver medications such as insulin directly to the stomach and could replace the daily injections used to treat diabetes patients, reports Alice Park for TIME. “We see no reason why someday this couldn’t be used to deliver any protein to the body,” says Prof. Robert Langer.

Boston Globe

Boston Globe reporter Martin Finucane writes that MIT researchers have developed an ingestible capsule that contains a small needle that injects insulin directly into the stomach. Finucane writes that the researchers “designed the pill with a special shape to ensure that it will fall and then orient itself at the bottom of the stomach so that the needle is facing toward the stomach lining rather than the stomach’s inside.”

NIH

Dr. Francis Collins, director of the National Institutes of Health, spotlights how MIT researchers have developed a new imaging technique that can “provide us with jaw-dropping views of a wide range of biological systems.” Collins writes that the new “imaging approach shows much promise as a complementary tool for biological exploration.”

The Wall Street Journal

Wall Street Journal reporter Sara Castellanos spotlights how researchers from MIT and Microsoft participated in a two-day hackathon with curators and digital experts from the Metropolitan Museum of Art. Together, they aimed to develop new AI technologies that could deliver new and personalized experiences “with a view toward deepening user engagement.”

Fast Company

Fast Company reporter Jesus Diaz writes that MIT researchers have developed a computer model that shows that rising water temperatures will cause the color of the world’s oceans to change.

Motherboard

MIT researchers have found that climate change will cause half of the world’s oceans to change color by 2100, reports Becky Ferreira for Motherboard. “Monitoring ocean color could yield valuable insights into the effects of climate change on phytoplankton,” Ferreira explains.

BBC News

BBC News reporter Matt McGrath writes that MIT researchers have found rising temperatures caused by climate change will cause the world’s oceans to become bluer, as the increased temperatures alter the mixture of phytoplankton. The color change “will likely be one of the earliest warning signals that we have changed the ecology of the ocean,” explains principal research scientist Stephanie Dutkiewicz.

USA Today

A study by MIT researchers shows that climate change will have a significant impact on phytoplankton, which will cause the oceans to change color, reports Brett Molina for USA Today. The researchers “developed a model simulating how different species of phytoplankton will grow and interact, and how warming oceans will have an impact,” Molina explains.

CNN

CNN reporter Jen Christensen writes that a new study by MIT researchers finds that climate change will impact phytoplankton, causing the color of the world’s oceans to shift. “The change is not a good thing, since it will definitely impact the rest of the food web,” says principal research scientist Stephanie Dutkiewicz.

WBUR

A new study by MIT scientists provides evidence that climate-driven changes in phytoplankton will cause more than half of the world’s oceans to shift in color by 2100, reports Barbara Moran for WBUR. Principal research scientist Stephanie Dutkiewicz explains that the color changes are important “because they tell us a lot about what's changing in the ocean.”

BBC News

In this video, graduate student Nima Fazeli speaks with the BBC News about his work developing a robot that uses sensors and cameras to learn how to play Jenga. “It’s using these techniques from AI and machine learning to be able to predict the future of its actions and decide what is the next best move,” explains Fazeli.

CBS News

CBS This Morning spotlights how MIT researchers have developed a new robot that can successfully play Jenga. “It is an automated system that has had a learning period first,” explains Prof. Alberto Rodriguez. “It uses the information from the camera and the force sensor to interpret its interactions with the Jenga tower.”

The Guardian

MIT researchers have developed a robot that can play Jenga by combining interactive perception and manipulations, reports Mattha Busby for The Guardian. “In what marks significant progress for robotic manipulation of real-world objects, a Jenga-playing machine can learn the complex physics involved in withdrawing wooden blocks from a tower through physical trial and error,” Busby explains.