Skip to content ↓

Topic

Renewable energy

Download RSS feed: News Articles / In the Media / Audio

Displaying 16 - 30 of 209 news clips related to this topic.
Show:

ClimateWire

ClimateWire reporter John Fialka writes that MIT engineers have developed a new process to convert carbon dioxide into a powder that can be safely stored for decades. “The MIT process gets closer to an ambitious dream: turning captured CO2 into a feedstock for clean fuel that replaces conventional batteries and stores electricity for months or years,” writes Fialka. “That could fill gaps in the nation's power grids as they transition from fossil fuels to intermittent solar and wind energy.”

Fast Company

Fast Company reporter Adele Peters spotlights how researchers at MIT have combined cement with carbon black to make concrete that can store energy as one of the climate tech innovations that provide hope “that it’s still possible to avoid the worst impacts of climate change.” With this new technology, “the foundation of your future house could eventually store solar power from your roof,” explains Peters.

The Independent

Principal Research Scientist Emre Gençer speaks with The Independent reporter Louise Boyle about natural hydrogen and its potential as a future renewable energy source. “There is a ‘mismatch’ where natural hydrogen is being discovered and where it could be used, which would require massive investments in completely new infrastructure,” says Gençer. “I think it will be part of the solution but we need to take it with a grain of salt.”

Newsweek

MIT researchers have developed a supercapacitor comprised of concrete and charcoal, that can store electricity and discharge as needed, reports Aleks Phillips for Newsweek. Researchers hope the device can provide “a cheap and architectural way of saving renewable energy from going to waste,” writes Phillips.

Scientific American

Johanna Mayer and Katie Hafner from Scientific American’s “The Lost Women of Science podcast spotlight the late former Prof. Mária Telkes and her work focused on the development of solar energy. “Dr. Mária Telkes died in 1995, at age 94,” says Mayer. “But her legacy lives on. Today, the number of people installing solar panels in their homes is consistently rising – and in a recent Pew study, 39% of homeowners surveyed said they were seriously considering going solar.”

Xinhuanet

Researchers at MIT have developed a conceptual design for a system that can efficiently produce “solar thermochemical hydrogen,” reports Xinhua. “The system harnesses the Sun's heat to directly split water and generate hydrogen -- a clean fuel that can power long-distance trucks, ships, and planes, while in the process emitting no greenhouse gas emissions.”

PBS

Quaise Energy co-founder Carlos Araque BS '01 MS '02 speaks with PBS Energy Switch host Scott Tinker about the future of geothermal energy. [Geothermal is “truly everywhere so it’s not a resource uncertainty, like there is with oil and gas, there’s always heat, but the technological gap prevents us from getting to it,” says Araque. These gaps “are the one caveat in unlocking this resource for everybody.”

The Boston Globe

Prof. Jessika Trancik speaks with Boston Globe reporter Aruni Soni about her new study that finds reducing the cost of solar energy will be accelerated by improvements in soft tech. “We found that the soft technology involved in solar energy really has not changed and hasn’t improved nearly as quickly as the hardware,” says Trancik. “These soft costs, in many systems, can be 50 percent or even more of the total cost of solar electricity.”

The Boston Globe

Researchers at MIT have developed a supercapacitor, an energy storage system, using cement, water and carbon, reports Macie Parker for The Boston Globe. “Energy storage is a global problem,” says Prof. Franz-Josef Ulm. “If we want to curb the environmental footprint, we need to get serious and come up with innovative ideas to reach these goals.”

Associated Press

Studies by researchers at MIT have found “that shifting to electric vehicles delivers a 30% to 50% reduction in greenhouse gas emissions over combustion vehicles,” reports Tom Krisher for Associated Press. According to Prof. Jessika Trancik, “electric vehicles are cleaner over their lifetimes, even after taking into account the pollution caused by the mining of metals for batteries,” writes Krisher.

Fast Company

Fast Company reporter Adele Peters writes that MIT researchers have developed a new type of concrete that can store energy, potentially enabling roads to be transformed into EV chargers and home foundations into sources of energy. “All of a sudden, you have a material which can not only carry load, but it can also store energy,” says Prof. Franz-Josef Ulm.

New Scientist

MIT engineers have uncovered a new way of creating an energy supercapacitor by combining cement, carbon black and water  that could one day be used to power homes or electric vehicles, reports Jeremy Hsu for New Scientist. “The materials are available for everyone all over the place, all over the world,” explains Prof. Franz-Josef Ulm. “Which means we don’t have the same restriction as with batteries.”

Popular Science

MIT researchers have discovered that when combined with water, carbon black and cement can produce a low-cost supercapacitor capable of storing electricity for later use, reports Andrew Paul for Popular Science. “With some further fine-tuning and experimentation, the team believes their enriched cement material could one day compose portions of buildings’ foundations, or even create wireless charging,” writes Paul.

Science

Researchers at MIT have found that cement and carbon black can be combined with water to create a battery alternative, reports Robert Service for Science. Professor Franz-Josef Ulm and his colleagues “mixed a small percent of carbon black with cement powder and added water,” explains Service. “The water readily combines with the cement. But because the particles of carbon black repel water, they tend to clump together, forming long interconnected tendrils within the hardening cement that act like a network of wires.”