Skip to content ↓

Topic

Quantum computing

Download RSS feed: News Articles / In the Media / Audio

Displaying 16 - 30 of 70 news clips related to this topic.
Show:

Newsweek

Researchers from MIT and elsewhere have successfully linked together two molecules in special quantum states, reports Pandora Dewan for Newsweek. “The discovery may lead to more robust quantum computing and support new research techniques,” writes Dewan.

Newsweek

MIT researchers have successfully figured out how to trap tiny electrons in a three-dimensional crystal prison, reports Jess Thomson for Newsweek. The researchers hope that “the flat band properties of the electrons in these crystals will help them to explore new quantum states in three-dimensional materials,” Thomson explains, “and therefore develop technology like superconductors, supercomputing quantum bits, and ultraefficient power lines.”

Forbes

Researchers from Atlantic Quantum, an MIT startup building quantum computers, have published new research showing “the architecture of the circuits underlying its quantum computer produces far fewer errors than the industry standard,” reports Rashi Shrivastava for Forbes.

Popular Mechanics

MIT researchers are hoping to use Dyson maps “to translate the language of classical physics into terms that a quantum computer—a machine designed to solve complex quandaries by leveraging the unique properties of quantum particles—can understand,” reports Darren Orf for Popular Mechanics. 

Physics World

MIT scientists have developed a new way of colliding ultracold molecules while controlling the rate at which they react, reports Martijn Boerkamp for Physics World. “Our work is a step to achieve quantum control over molecular collisions and reactions and to map out more broadly the collisional properties of these molecules with the goal of finding a deeper understanding,” explains Prof. Wolfgang Ketterle.

Gizmodo

Gizmodo reporter Isaac Schultz writes that researchers from MIT, Caltech and elsewhere have found that “quantum systems can imitate wormholes, theorized shortcuts in spacetime, in that the systems allow the instantaneous transit of information between remote locations.” Grad student Alexander Zlokapa explains that: “We performed a kind of quantum teleportation equivalent to a traversable wormhole in the gravity picture. To do this, we had to simplify the quantum system to the smallest example that preserves gravitational characteristics so we could implement it.”

Popular Science

Physicists from MIT and elsewhere have created a small “wormhole” effect between two quantum systems on the same processor and were able to send a signal through it, reports Charlotte Hu for Popular Science. This new model is a “way to study the fundamental problems of the universe in a laboratory setting,” writes Hu. 

VICE

Researchers at MIT and elsewhere have created a holographic wormhole using Google’s Sycamore quantum computer, reports Sarah Wells for Vice. “The researchers created an entangled state (a quantum mechanical phenomena where distant particles can still communicate with each other) between two halves of a quantum computer and sent a message in between,” writes Wells. “This message was scrambled as it entered the system and, through entanglement, unscrambled on the other side.”

The New York Times

A team of researchers, including scientists from MIT, “simulated a pair of black holes in a quantum computer and sent a message between them through a shortcut in space-time called a wormhole,” reports Dennis Overbye for The New York Times. The development is another “step in the effort to understand the relation between gravity, which shapes the universe, and quantum mechanics, which governs the subatomic realm of particles,” writes Overbye.

The Boston Globe

Boston Globe correspondent Scott Kirsner explores the growth of quantum computing from the field's roots “at a 1981 meeting in Dedham, at MIT’s Endicott House conference center.” Bharath Kannan PhD ’22, co-founder and CEO of Atlantic Quantum, notes that if researchers could develop a computer that was natively quantum mechanical, "it would be game-changing for a lot of industries.”

The Boston Globe

QuEra Computing, a cloud-based quantum computer service co-founded by faculty from MIT and Harvard, has “teamed up with Amazon’s AWS cloud service to sell online access to the device,” reports Hiawatha Bray for The Boston Globe. The device “can be used by universities and corporate researchers worldwide for a variety of advanced tasks, like simulating the behavior of subatomic particles or developing new chemical compounds,” writes Bray.

Reuters

QuEra, co-founded by faculty from MIT and Harvard, is a quantum computing startup that uses “neutral atoms in a vacuum chamber and use lasers to cool and control them,” reports Jane Lanhee Lee for Reuters. The startup has announced its “computer is now accessible to the public through Amazon.com cloud’s quantum compute service Braket,” writes Lee.

Nature

Prof. Peter Shor has been named one of the winners of the 2023 Breakthrough Prize in Fundamental Physics, reports Nature. “Shor’s most renowned contribution is the development of quantum algorithms for prime number factorization,” writes Nature.

Inside Higher Ed

Prof. Danna Freedman has been named a 2022 MacArthur Fellow for “creating novel molecular materials with unique properties directly relevant to quantum information technologies,” reports Susan H. Greenberg for Inside Higher Ed

The Boston Globe

Prof. Danna Freedman, a synthetic inorganic chemist, has been honored as one of this year’s MacArthur Fellows, reports Travis Anderson for The Boston Globe. “The unmatched control inherent in synthetic chemistry opens doors to other fields and discoveries beyond chemistry,” said Freedman of her research. “By designing and creating chemical systems, we can uncover new science in areas ranging from quantum information science to magnetism.”