Skip to content ↓

Topic

Physics

Download RSS feed: News Articles / In the Media / Audio

Displaying 496 - 510 of 756 news clips related to this topic.
Show:

Boston Globe

The discovery of the oldest and most distant black hole ever detected has provided a team of astronomers new insights into our universe, writes Alyssa Meyers for The Boston Globe. “In some sense, what we’ve done is determine with a high degree of accuracy when the first stars in the universe turned on,” explains Prof. Robert Simcoe. 

Reuters

The discovery of the oldest and most distant black hole ever observed could provide scientists with insights into the early stages of our universe, reports Will Dunham for Reuters. “This object provides us with a measurement of the time at which the universe first became illuminated with starlight,” explains Prof. Robert Simcoe. 

National Public Radio (NPR)

NPR’s Nell Greenfieldboyce reports that scientists have discovered the most distant supermassive black hole every discovered, and that the findings are shedding light on when starlight first appeared in our universe. "We have an estimate now, with about 1 to 2 percent accuracy, for the moment at which starlight first illuminated the universe,” explains Prof. Robert Simcoe. 

USA Today

USA Today reporter Doyle Rice writes that a team of astronomers, including several from MIT, has discovered the oldest and most distant supermassive black hole ever detected. “The black hole resides in a quasar and its light reaches us from when the universe was only 5% of its current age — over 13 billion years ago,” explains Rice. 

Newsweek

Newsweek reporter Katherine Hignett writes that MIT and Harvard researchers have successfully manipulated individual atoms using lasers in one of the largest quantum computer simulations. Hignett writes that, “their technology could help make superfast quantum computers a working reality.”

Boston Globe

Boston Globe reporter Alyssa Meyers writes that researchers from MIT and Harvard have demonstrated one of the largest quantum simulators that can trap individual atoms in laser beams. Prof. Vladan Vuletić explains that it is, “a major advance is to be able to align and arrange individual atoms so we can hold on to them and track them.”

Massive

Prof. Nergis Mavalvala speaks with Massive reporter Prabarna Ganguly about her work engineering high-precision laser beams to detect signals from deep space, the long hunt for gravitational waves and her hopes for future generations of scientists. Ganguly writes that Mavalvala is, “one of the stalwarts in a long, arduous, and deeply human discovery of faraway perturbations rippling through the universe.”

Los Angeles Times

Los Angeles Times reporter Amina Khan writes that researchers from the LIGO Scientific Collaboration have identified gravitational waves emitted from the smallest black hole they have detected. “Its mass makes it very interesting,” explains Prof. Salvatore Vitale. The discovery, he adds, “really starts populating more of this low-mass region that [until now] was quite empty.”

MSNBC

The late Institute Prof. Emerita Mildred Dresselhaus is featured on MSNBC Live with Velshi & Ruhle’s “Monumental Americans” series, which highlights Americans they believe should be honored with a statue. “Known as ‘the Queen of Carbon Science,’ the electrical engineer worked at MIT for 57 years and was a pioneer for women in science leadership positions.” 

United Press International (UPI)

UPI reporter Brooks Hays writes that an international team of astronomers, including MIT Prof. Saul Rappaport, has detected comets outside the Milky Way. “The distant ice balls, roughly the size of Halley's Comet, were spotted orbiting a small star 800 light-years from Earth. They were documented using transit photometry,” Hays explains. 

Newsweek

MIT research scientist John Wright speaks with Hannah Osborne of Newsweek about a new process developed to heat fusion plasma, raising ions to energy levels greater than previously achieved. Wright explains that, “this method may have applications to more efficient heating of the plasma to the temperatures needed to begin the fusion burn.”

CBC News

CBC News reporter Michael MacDonald spotlights the work of Prof. Sara Seager, who he calls a “certified rock star” in her field, describing everything from her interest in astronomy as a young child to her current search for exoplanets and alien life. McDonald writes that, “ultimately, her research could help answer some of the biggest questions facing humankind.”

Wired

Wired reporter Abigail Beall explores the science behind the successful detection of two colliding neutron stars. "It immediately appeared to us the source was likely to be neutron stars, the other coveted source we were hoping to see—and promising the world we would see," says MIT’s David Shoemaker, spokesperson for the LIGO Scientific Collaboration.

Boston Globe

Boston Globe reporter Eric Moskowitz explores the significance of the first detection of two colliding neutron stars using gravitational wave detectors and telescopes. Moskowitz notes that the discovery offers, “so many immediate and long-term rewards that researchers struggled to pick their favorite part.” Senior Research Scientist Erik Katsavounidis explained that, “It’s like getting a kid in the candy store and telling them to choose.”

Boston Herald

Boston Herald reporter Marie Szaniszlo writes about how the first successful detection of gravitational waves and light emitted from the collusion of two neutron stars has provided insight into gamma rays and heavy elements. Prof. Anna Frebel explains that, “What makes this such an important discovery is that we can actually see element formation in action.”