Skip to content ↓

Topic

Physics

Download RSS feed: News Articles / In the Media / Audio

Displaying 16 - 30 of 674 news clips related to this topic.
Show:

Interesting Engineering

MIT astronomers measured a black hole’s spin for the first time by tracking the X-ray flashes produced by a black hole following a tidal disruption event, reports Interesting Engineering’s Mrigakshi Dixit. “The spin value of a black hole tells us about how it evolved over the age of the universe,” explains Research Scientist Dheeraj Pasham. 

Popular Science

MIT astronomers have found a new way to measure how fast a black hole spins, observing the aftermath of a black hole tidal disruption event with a telescope aboard the International Space Station, reports Laura Baisas for Popular Science. “The only way you can do this is, as soon as a tidal disruption event goes off, you need to get a telescope to look at this object continuously, for a very long time, so you can probe all kinds of timescales, from minutes to months,” said Research Scientist Dheeraj Pasham.


 

Gizmodo

Astronomers at MIT and elsewhere have determined how to measure the spin of a nearby supermassive black hole using a new calculation method, reports Isaac Schultz for Gizmodo. The team “managed to deduce a supermassive black hole’s spin by measuring the wobble of its accretion disk after a star has been disrupted—a polite word for torn up—by the gigantic object,” explains Schultz. “They found the black hole’s spin was less than 25% the speed of light—slow, at least for a black hole.” 

The Boston Globe

With the help of undergraduates in MIT’s Observational Stellar Archaeology 8.S30 class, researchers at MIT found three of the oldest stars in the universe orbiting around the outskirts of the Milky Way Galaxy, reports Ava Berger for The Boston Globe. “[The stars] have preserved all this information from early on for 13 billion years for us because they’re just sitting there,” explains Prof. Anna Frebel. “Like the can of beans in the back of your cupboard, unless you crack it open or damage it somehow it just keeps sitting there.”

TechCrunch

Researchers at MIT and elsewhere have developed a new machine-learning model capable of “predicting a physical system’s phase or state,” report Kyle Wiggers and Devin Coldewey for TechCrunch

Popular Mechanics

MIT physicists have “successfully placed two dysprosium atoms only 50 nanometers apart—10 times closer than previous studies—using ‘optical tweezers,’” reports Darren Orf for Popular Mechanics. Utilizing this technique can allow scientists to “better understand quantum phenomena such as superconductivity and superradiance,” explains Orf. 

Mashable

Researchers at MIT have discovered “three of the oldest stars in the universe lurking right outside the Milky Way,” reports Elisha Sauers for Mashable. “These little stars are nearly 13 billion years old, and they haven't changed one bit since," says Prof. Anna Frebel. "The stars will continue to exist for about another 3 to 5 billion years or so."

Newsweek

MIT researchers have discovered three of the oldest stars in our universe among the stars that surround “the distant edge of our Milky Way galaxy,” reports Jess Thomson for Newsweek. “These stars, dubbed SASS (Small Accreted Stellar System stars), are suspected to have been born when the very first galaxies in the universe were forming, with each belonging to its own small primordial galaxy,” explains Thompson. 

Gizmodo

Prof. Anna Frebel and her colleagues have identified some of the oldest stars in our universe, located in the Milky Way’s halo, a discovery that stemmed from Frebel’s new course, 8.S30 (Observational Stellar Archaeology), reports Isaac Schultz for Gizmodo. “Studying the ancient stars won’t only help explain the timeline of stellar evolution, but also how our galaxy actually formed,” Schultz explains.

The Guardian

An analysis by MIT researchers has identified “wide-ranging instances of AI systems double-crossing opponents, bluffing and pretending to be human,” reports Hannah Devlin for The Guardian. “As the deceptive capabilities of AI systems become more advanced, the dangers they pose to society will become increasingly serious,” says postdoctoral associate Peter Park. 

Astronomy

Researchers at MIT have discovered that a previously witnessed supermassive black hole has “a smaller companion black hole zipping around it, kicking up dust every time it goes by,” reports John Wenz for Astronomy. This discovery “shakes up our thinking of what the environment at the core of the galaxy looks like,” explains Wenz. “Instead of a simple disk of matter surrounding the central black hole, steadily swirling across its event horizon, the centers of galaxies could host multiple black holes of different sizes, leading to more complex feeding behavior.”

Forbes

Prof. Roger Levy, Prof. Tracy Slatyer and Prof. Martin Wainwright are among the 2024 John Simon Guggenheim Foundation Fellowship recipients, reports Michael T. Nietzel for Forbes. “The new fellows represent 52 scholarly disciplines and artistic fields and are affiliated with 84 academic institutions,” writes Nietzel.

The Boston Globe

Prof. Roger Levy, Prof. Tracy Slatyer and Prof. Martin Wainwright have been awarded John Simon Guggenheim Foundation Fellowships, reports Mark Feeney for The Boston Globe. A Guggenheim fellowship “is one of the most sought-after honors in academe, the arts, and culture,” explains Feeney. “It helps underwrite a proposed art or scholarly project.”

Science

Science reporter Jennifer Sills asked scientists to answer the question: “Imagine that you meet all of your research goals. Describe the impact of your research from the perspective of a person, animal, plant, place, object, or entity that has benefited from your success.” Xiangkun (Elvis) Cao, a Schmidt Science Fellow in the MIT Department of Chemical Engineering, shares his response from a photon’s perspective. “I am a photon,” writes Cao. “I started my journey entangled with my significant other at the beginning of the Universe. In the past, humans couldn’t understand me, but then physicists created a quantum computer. At last, I have been reunited with my life partner!”

Space.com

NASA astronaut Christopher Williams PhD '12 shares his excitement over the upcoming solar eclipse with Space.com Elizabeth Howell, noting he is most excited that the celestial event will provide unique views of the sun’s outer atmosphere. Williams previously conducted radio astronomy research and helped build the Murchison Widefield Array in Australia during his time at MIT. "It was an incredible experience, because I got to both work on the cosmology and the science behind that,” recalls Williams.