Skip to content ↓

Topic

Nuclear power and reactors

Download RSS feed: News Articles / In the Media / Audio

Displaying 31 - 45 of 76 news clips related to this topic.
Show:

Associated Press

Scientists from MIT and Commonwealth Fusion Systems have performed a successful test of the world’s strongest high temperature superconducting magnet, a crucial step in creating net positive energy from a fusion device, reports the Associated Press.

The Boston Globe

Scientists at MIT and Commonwealth Fusion Systems have cleared a major hurdle in their efforts to achieve net energy from fusion, successfully creating a 20 tesla magnetic field using the high-temperature superconducting magnet they developed, reports Hiawatha Bray for The Boston Globe. “This test provides reason for hope that in the not too distant future we could have an entirely new technology to deploy in the race to transform the global energy system and slow climate change,” says Maria Zuber, MIT’s vice president for research.

CNBC

CNBC reporter Catherine Clifford writes that researchers from MIT and Commonwealth Fusion Systems have successfully demonstrated the high-temperature superconducting electromagnet they developed, creating a 20 tesla magnetic field. “This magnet will change the trajectory of both fusion science and energy, and we think eventually the world’s energy landscape,” says Dennis Whyte, director of MIT’s Plasma Science and Fusion Center.

Reuters

MIT and Commonwealth Fusion Systems scientists have created a 20 tesla magnetic field using a large, high temperature superconducting fusion magnet, a step towards creating a fusion power plant, reports Stephen Jewkes for Reuters. The researchers aim “to use the technology to build a commercially viable fusion power plant to generate zero-emission electricity.”

National Geographic

Prof. Jacopo Buongiorno speaks with National Geographic reporter Lois Parshley about the future of nuclear energy in the U.S. and western Europe. “Our analysis shows a big share of nuclear, a big share of renewables, and some storage is the best mix that is low-carbon, reliable, and at the lowest cost,” says Buongiorno of an MIT report showing the most cost-efficient, reliable grid comes from an energy mix.  

Guardian

A series of papers by MIT researchers demonstrates how their design for a new nuclear fusion reactor should work, reports Oscar Schwartz for The Guardian. “Fusion seems like one of the possible solutions to get ourselves out of our impending climate disaster,” says Martin Greenwald, deputy director of MIT’s Plasma Science and Fusion Center.

Greentech Media

Writing for Greentech Media, Jason Deign spotlights a new study by Prof. Jessika Trancik that examines the rising costs of new nuclear plants. The researchers found that “the main reason for spiraling nuclear plant construction bills is soft costs, the indirect expenses related to activities such as engineering design, purchasing, planning, scheduling and — ironically — estimating and cost control.”

Forbes

Forbes contributor Dipka Bhambhani spotlights a new study by MIT researchers that examines the causes of cost overruns and delays in nuclear power developments, and finds they could have been “averted by building plants in factories and then installing them on site.”

The Hill

Writing for The Hill, Martin Greenwald, deputy director of MIT’s Plasma Science and Fusion Center, explores the potential of fusion power. Greenwald examines how recent advances in high-temperature superconductors and recent investments in fusion technology from the private sector could “alter the landscape and offer the possibility of a dramatic speed-up in the development of this new energy source.”

The Washington Post

MIT researchers have published a series of new papers demonstrating that the design for the SPARC compact nuclear fusion reactor “is both technically feasible and could produce 10 times the energy it consumes,” reports Dino Grandoni for The Washington Post.

Popular Mechanics

Popular Mechanics reporter Caroline Delbert writes that new research by MIT scientists provides evidence that the compact nuclear fusion design they are developing should be feasible. Delbert writes that the researchers may be able to get the SPARC reactor online within 10 years by “improving materials and shrinking costs.”

United Press International (UPI)

UPI reporter Brooks Hays writes that a series of papers by MIT researchers finds that the designs for the SPARC compact nuclear fusion experiment should be viable. “Engineers expect their SPARC reactor, or tokamak, to be much more powerful than previous experimental reactors,” writes Hays. 

The New York Times

In a series of new papers, MIT researchers provide evidence that plans to develop a next-generation compact nuclear fusion reactor called SPARC should be viable, reports Henry Fountain for The New York Times. The research “confirms that the design we’re working on is very likely to work,” says Martin Greenwald, deputy director for MIT’s Plasma Science and Fusion Center. 

The Washington Post

In an article for The Washington Post, Prof. Kate Brown examines the impacts of the Chernobyl nuclear meltdown. Brown notes that the consequences of the accident reached further than initially thought, writing that “the fallout map shows that Chernobyl radioactivity drifted widely across Europe, usually in areas with higher altitudes and precipitation.”

Boston Globe

Larry Edelman at The Boston Globe reports that Commonwealth Fusion Systems (CFS) has completed its first round of venture financing with a total of $115 million. “CFS is working with the Plasma Science and Fusion Center at MIT to develop what it hopes will be the first commercial system that creates power using nuclear fusion,” writes Edelman.