Skip to content ↓

Topic

National Science Foundation (NSF)

Download RSS feed: News Articles / In the Media / Audio

Displaying 76 - 90 of 564 news clips related to this topic.
Show:

Mashable

MIT researchers have developed an ultra-thin solar panel that can adhere to any surface for access to immediate power, reports Jules Suzdaltsev for Mashable. “These ultra-portable panels can make the difference in remote regions where emergencies require more power,” writes Suzdaltsev.

WCVB

Researchers at MIT have “created a stretchable color-changing material based on how nature often reflects color,” reports Nicole Estaphan for WCVB’s Chronicle. “As you stretch it, these embedded nanostructures change size,” explains graduate student Benjamin Miller, “which in turn changes the color of light that comes back. We are making an elastic, squishy version of the sort of thing you find in nature.”

Boston.com

Researchers at MIT have developed a new ultrathin solar cell that can adhere to different surfaces providing power on the go, reports Clara McCourt for Boston.com. “The new technology surpasses convential solar panels in both size and ability, with 18 times more power per kilogram at one-hundredth the weight,” writes McCourt.

Popular Science

Popular Science reporter Andrew Paul writes that MIT researchers have developed a new ultra-thin solar cell that is one-hundredth the weight of conventional panels and could transform almost any surface into a power generator. The new material could potentially generate, “18 times more power-per-kilogram compared to traditional solar technology,” writes Paul. “Not only that, but its production methods show promising potential for scalability and major manufacturing.”

Physics World

Physics World has named two research advances by MIT researchers to its list of the Top 10 Breakthroughs of the Year. Prof. Gang Chen and his colleagues were selected for their work “showing that cubic boron arsenide is one of the best semiconductors known to science.” Prof. Asegun Henry, grad student Alina LaPotin and their colleagues were nominated for “constructing a thermophotovoltaic (TPV) cell with an efficiency of more than 40%.”

Salon

A new study by MIT scientists finds that Earth can self-regulate its temperature thanks to a stabilizing feedback mechanism that works over hundreds of thousands of years, reports Troy Farah for Salon. “The finding has big implications for our understanding of the past, but also how global heating is shaping the future of our home world,” writes Farah. “It even helps us better understand the evolution of planetary temperatures that can make the search for alien-inhabited exoplanets more fruitful.”

US News & World Report

Researchers at MIT have found indoor humidity levels can influence the transmission of Covid-19, reports Dennis Thompson for US News & World Report. “We found that even when considering countries with very strong versus very weak Covid-19 mitigation policies, or wildly different outdoor conditions, indoor — rather than outdoor — relative humidity maintains an underlying strong and robust link with Covid-19 outcomes,” explains Prof. Lydia Bourouiba.

Fortune

MIT researchers have found that relative humidity “may be an important metric in influencing the transmission of Covid-19,” reports Sophie Mellor for Fortune, “Maintaining an indoor relative humidity between 40% and 60% – a Goldilocks climate, not too humid, not too dry – is associated with relatively lower rates of Covid-19 infections and deaths,” writes Mellor.

Time

A stamp-sized reusable ultrasound sticker developed by researchers in Prof. Xuanhe Zhao’s research group has been named one of the best inventions of 2022 by TIME. “Unlike stretchy existing ultrasound wearables, which sometimes produce distorted images, the new device’s stiff transducer array can record high-resolution video of deep internal organs (e.g. heart, lungs) over a two-day period,” writes Alison Van Houten.

CBS

Scientists at MIT have found that specific neurons in the human brain light up whenever we see images of food, reports Dr. Mallika Marshall for CBS Boston. “The researchers now want to explore how people’s responses to certain foods might differ depending on their personal preferences, likes and dislikes and past experiences,” Marshall.

Science

Alexander Sludds, a graduate student in MIT’s Research Lab for Electronics, joins Megan Cantwell on the Science magazine podcast to discuss his team’s new method for processing data on edge devices, which are devices that connect two networks together.

CBC News

Prof. Fadel Adib speaks with CBC Radio about his lab’s work developing a wireless, battery-free underwater camera that runs on sound waves. "We want to be able to use them to monitor, for example, underwater currents, because these are highly related to what impacts the climate," says Adib. "Or even underwater corals, seeing how they are being impacted by climate change and how potentially intervention to mitigate climate change is helping them recover."

The Atlantic

Prof. Jack Wisdom and his colleagues have found that Saturn’s rings are comprised of debris from its former moon, reports Marina Koren for The Atlantic. “The researchers say the moon’s demise was mostly Titan’s fault. The big moon jostled the smaller one, putting the object on a very elongated track around Saturn,” writes Koren.

Forbes

Prof. Jack Wisdom and his colleagues have found that “Saturn’s rings are a result of a moon that was torn apart by the planet’s tidal forces about 160 million years ago,” reports Jamie Carter for Forbes. “Wisdom and his co-researchers have dubbed the moon Chrysalis after the process of Chrysalis transforming into a butterfly,” writes Carter.

Reuters

Reuters reporter Will Dunham writes that scientists from MIT and other institutions have found that the destruction of a large moon, called Chrysalis, that “strayed too close to Saturn would account both for the birth of the gas giant planet's magnificent rings and its unusual orbital tilt of about 27 degrees.” Prof. Jack Wisdom explained that "as a butterfly emerges from a chrysalis, the rings of Saturn emerged from the primordial satellite Chrysalis.”