Skip to content ↓

Topic

National Science Foundation (NSF)

Download RSS feed: News Articles / In the Media / Audio

Displaying 436 - 450 of 662 news clips related to this topic.
Show:

Reuters

The discovery of the oldest and most distant black hole ever observed could provide scientists with insights into the early stages of our universe, reports Will Dunham for Reuters. “This object provides us with a measurement of the time at which the universe first became illuminated with starlight,” explains Prof. Robert Simcoe. 

Inverse

MIT engineers have developed a method to 3-D print living cells into tattoos and 3-D structures, reports Danny Paez for Inverse. Paez explains that the researchers believe the technique, “could possibly be used to create a ‘living computer,’ or a structure made up of living cells that can do the stuff your laptop can.”

National Public Radio (NPR)

NPR’s Nell Greenfieldboyce reports that scientists have discovered the most distant supermassive black hole every discovered, and that the findings are shedding light on when starlight first appeared in our universe. "We have an estimate now, with about 1 to 2 percent accuracy, for the moment at which starlight first illuminated the universe,” explains Prof. Robert Simcoe. 

USA Today

USA Today reporter Doyle Rice writes that a team of astronomers, including several from MIT, has discovered the oldest and most distant supermassive black hole ever detected. “The black hole resides in a quasar and its light reaches us from when the universe was only 5% of its current age — over 13 billion years ago,” explains Rice. 

co.design

Co.Design reporter Katharine Schwab writes that MIT researchers have developed a tattoo made of living cells that activate when exposed to different kinds of stimuli. Schwab explains that in the future the tattoos could be designed, “so that they respond to environmental pollutants or changes in temperature.”

The Wall Street Journal

In an article for The Wall Street Journal, Christopher Matthews highlights a new study by Prof. Kerry Emanuel that shows Texas faces an increased risk of devastating rainfall due to climate change. The study demonstrated how greenhouse gas emissions, “help warm offshore waters—a phenomenon that can magnify the severity of storms and generate more rain, creating bigger floods.”

Bloomberg

Prof. Kerry Emanuel released a new paper that analyzes the impact of Hurricane Harvey, writes  Bloomberg’s Eric Roston. Emanuel found that “Harvey’s rainfall in Houston was ‘biblical’ in the sense that it likely occurred around once since the Old Testament was written.”

Los Angeles Times

A recent study from Prof. Kerry Emanuel suggests that, due to climate change, “massive hurricanes like Harvey are expected to strike Houston and Texas with much greater frequency in the future than they do now,” writes Deborah Netburn for the Los Angeles Times.

The Washington Post

Chris Mooney at The Washington Post writes about a new study from Prof. Kerry Emanuel, which suggests that the extreme rains during Hurricane Harvey were made more likely by climate change, and “such extreme flooding events will only become more frequent as the globe continues to warm.”

Wired

Wired reporter Abigail Beall explores the science behind the successful detection of two colliding neutron stars. "It immediately appeared to us the source was likely to be neutron stars, the other coveted source we were hoping to see—and promising the world we would see," says MIT’s David Shoemaker, spokesperson for the LIGO Scientific Collaboration.

Boston Globe

Boston Globe reporter Eric Moskowitz explores the significance of the first detection of two colliding neutron stars using gravitational wave detectors and telescopes. Moskowitz notes that the discovery offers, “so many immediate and long-term rewards that researchers struggled to pick their favorite part.” Senior Research Scientist Erik Katsavounidis explained that, “It’s like getting a kid in the candy store and telling them to choose.”

Boston Herald

Boston Herald reporter Marie Szaniszlo writes about how the first successful detection of gravitational waves and light emitted from the collusion of two neutron stars has provided insight into gamma rays and heavy elements. Prof. Anna Frebel explains that, “What makes this such an important discovery is that we can actually see element formation in action.”

WHDH 7

Channel 7’s Matt Rascon reports on how scientists from LIGO, Virgo and 70 observatories around the world have detected gravitational waves and light emitted from two colliding neutron stars. “For the first time we’re able to put it all together and get a much more complete picture of what nature is doing,” explains Prof. Nergis Mavalvala.

AFP

AFP reporter Mariëtte Le Roux writes about how the detection of two colliding neutron stars has provided scientists with new insights into the universe. "It was clear to us within minutes that we had a binary neutron star detection," said MIT’s David Shoemaker, spokesperson for the LIGO Scientific Collaboration. "The signals were much too beautiful to be anything but that.”

The Washington Post

Washington Post reporters Ben Guarino and Sarah Kaplan delve into the first detection of a kilonova using both gravitational wave detectors and telescopes. “It's a monumental thing, a testimony to a lot of people working together,” explains David Shoemaker, a senior research scientist at MIT and spokesperson for the LIGO Scientific Collaboration.