Skip to content ↓

Topic

National Science Foundation (NSF)

Download RSS feed: News Articles / In the Media / Audio

Displaying 151 - 165 of 622 news clips related to this topic.
Show:

Popular Science

Prof. Jack Wisdom is the lead author of a new study that proposes “Saturn and Neptune’s gravity may have once been in sync, but Saturn has since escaped Neptune’s pull due to a missing moon,” reports Laura Baisas for Popular Science.

Economist

Prof. Edward Boyden has developed a new imaging technique called expansion-revealing microscopy that can reveal tiny protein structures in tissues, reports The Economist. “Already his team at MIT has used it to reveal detail in synapses, the nanometer-sized junctions between nerve cells, and also to shed light on the mechanisms at play in Alzheimer’s disease, revealing occasional spirals of amyloid-beta protein around axons, which are the threadlike parts of nerve cells that carry electrical impulses.”

The Washington Post

Washington Post reporter Pranshu Verma writes about how Prof. Dina Katabi and her colleagues developed a new AI tool that could be used to help detect early signs of Parkinson’s by analyzing a patient’s breathing patterns. For diseases like Parkinson’s “one of the biggest challenges is that we need to get to [it] very early on, before the damage has mostly happened in the brain,” said Katabi. “So being able to detect Parkinson’s early is essential.”

NBC News

NBC News reporter Kimmy Yam notes that months after having all charges he faced under the “China Initiative” dismissed, Prof. Gang Chen and his colleagues have discovered a new material that can perform better than silicon. "The discovery could have far-reaching effects, as silicon is currently among the most widely used semiconductors, making up the foundation of modern technology from computer chips to smartphones," writes Yam. 

Forbes

Forbes contributor Jennifer Kite-Powell spotlights how MIT researchers created a new AI system that analyzes radio waves bouncing off a person while they sleep to monitor breathing patterns and help identify Parkinson’s disease. “The device can also measure how bad the disease has become and could be used to track Parkinson's progression over time,” writes Kite-Powell.

The Boston Globe

A new tool for diagnosing Parkinson’s disease developed by MIT researchers uses an AI system to monitor a person’s breathing patterns during sleep, reports Hiawatha Bray for The Boston Globe. “The system is capable of detecting the chest movements of a sleeping person, even if they’re under a blanket or lying on their side,” writes Bray. “It uses software to filter out all other extraneous information, until only the breathing data remains. Using it for just one night provides enough data for a diagnosis.”

WBUR

Boston Globe reporter Hiawatha Bray speaks with Radio Boston host Tiziana Dearing about how MIT researchers developed an artificial intelligence model that uses a person’s breathing patterns to detect Parkinson’s Disease. The researchers “hope to continue doing this for other diseases like Alzheimer’s and potentially other neurological diseases,” says Bray.

The Guardian

Researchers at MIT have discovered that pictures of food appear to stimulate strong reactions among specific sets of neurons in the human brain, a trait that could have evolved due to the importance of food for humans, reports Sascha Pare for The Guardian. “The researchers posit these neurons have gone undetected because they are spread across the other specialized cluster for faces, places, bodies and words, rather than concentrated in one region,” writes Pare.

Fierce Biotech

Researchers at MIT have developed an artificial intelligence sensor that can track the progression of Parkinson’s disease in patients based on their breathing while they sleep, reports Conor Hale for Fierce Biotech. “The device emits radio waves and captures their reflection to read small changes in its immediate environment,” writes Hale. “It works like a radar, but in this case, the device senses the rise and fall of a person’s chest.”

Boston.com

MIT researchers have developed a new artificial intelligence system that uses a person’s breathing pattern to help detect Parkinson’s sisease, reports Susannah Sudborough for Boston.com. “The device emits radio signals, analyzes reflections off the surrounding environment, and monitors the person’s breathing patterns without any bodily contact,” writes Sudborough.

STAT

Researchers at MIT and other institutions have developed an artificial intelligence tool that can analyze changes in nighttime breathing to detect and track the progression of Parkinson’s disease, reports Casey Ross for STAT. “The AI was able to accurately flag Parkinson’s using one night of breathing data collected from a belt worn around the abdomen or from a passive monitoring system that tracks breathing using a low-power radio signal,” writes Ross.

VICE

Researchers at MIT believe they have found a new semiconductor that's better than silicon, which could open the doors to potentially faster and smaller computer chips in the future, reports Rachel Cheung for Vice. “Cubic boron arsenide has significantly higher mobility to both electronics and their positively charged counterparts than silicon, the ubiquitous semiconductor used in electronics and computers,” explains Cheung.

Fortune

Researchers at MIT and other institutions proved “that cubic boron arsenide performs better than silicon at conducting heat and electricity,” reports Nicholas Gordon for Fortune. “The new material may help designers overcome the natural limits of current models to make better, faster, and smaller chips,” writes Gordon.

STAT

STAT reporter Edward Chen spotlights how MIT researchers developed a new ultrasound adhesive that can stick to skin for up to 48 hours, allowing for continuous monitoring of internal organs. “It’s a very impressive new frontier about how we can use ultrasound imaging continuously to assess multiple organs, organ systems,” said Eric Topol, the founder and director of the Scripps Research Translational Institute. “48 hours of continuous imaging, you’d have to lock somebody up in a hospital, put transducers on them. This is amazing, from that respect.”

Smithsonian Magazine

MIT researchers have developed an adhesive ultrasound patch that can continuously image the inner workings of the body for up to 48 hours, reports Sarah Kuta for Smithsonian Magazine. ““We believe we’ve opened a new era of wearable imaging,” says Prof. Xuanhe Zhao. “With a few patches on your body, you could see your internal organs.”