Skip to content ↓

Topic

National Institutes of Health (NIH)

Download RSS feed: News Articles / In the Media / Audio

Displaying 16 - 30 of 264 news clips related to this topic.
Show:

The Daily Beast

MIT researchers have developed a new implant that in the future could be used to deliver insulin to patients for up to a month, potentially enabling patients to control diabetes without injections, reports Tony Ho Tran for the Daily Beast. In the future, the researchers hope to “develop a device for humans that would be roughly the size of a stick of gum,” writes Tran. “The implant could also be used to deliver things like drugs or proteins to help treat other diseases in humans as well.”

The Boston Globe

Michal Caspi Tal, a principal research scientist in the department of biological engineering, speaks with Boston Globe reporter Kay Lazar about her research aimed at better understanding why some people develop chronic illness after infection with Lyme disease and Covid-19. “Long Covid and chronic Lyme share so many features that it’s uncanny,” said Tal. “This is a solvable problem. This is not rocket science. This just needs to be looked at with fresh eyes.”

Scientific American

MIT scientists have developed a new brain “atlas” and computer model that sheds insight into the brain-body connections in C. elegans worms, reports Lauren Leffer for Scientific American. “Through establishing those brain-behavior links in a humble roundworm,” writes Leffer, “neuroscientists are one step closer to understanding how all sorts of animal brains, even potentially human ones, encode action.”

TechCrunch

Researchers from MIT and Harvard have explored astrocytes, a group of brain cells, from a computational perspective and developed a mathematical model that shows how they can be used to build a biological transformer, reports Kyle Wiggers for TechCrunch. “The brain is far superior to even the best artificial neural networks that we have developed, but we don’t really know exactly how the brain works,” says research staff member Dmitry Krotov. “There is scientific value in thinking about connections between biological hardware and large-scale artificial intelligence networks. This is neuroscience for AI and AI for neuroscience.

Forbes

MIT researchers at MIT have developed a microfluidic chip-based model of liver tissue that “allows researchers to understand the biological mechanisms underlying liver tissue regeneration and points to several molecules that may promote the process,” reports William A. Haseltine for Forbes. "These results mark significant progress in our understanding of the human body’s regenerative properties," writes Haseltine. 

NPR

Researchers at MIT have developed a mobile vaccine printer capable of printing a vaccine onto a patch of microneedles that can be absorbed into the skin without injection, reports Sandra Tsing for NPR. “These printed vaccines could be used in areas that are unable to refrigerate traditional vaccines,” explains Tsing.

Forbes

Prof. Daniela Rus, director of CSAIL, writes for Forbes about Prof. Dina Katabi’s work using insights from wireless systems to help glean information about patient health. “Incorporating continuous time data collection in healthcare using ambient WiFi detectable by machine learning promises an era where early and accurate diagnosis becomes the norm rather than the exception,” writes Rus.

Forbes

In an article for Forbes, research affiliate John Werner spotlights Prof. Dina Katabi and her work showcasing how AI can boost the capabilities of clinical data. “We are going to collect data, clinical data from patients continuously in their homes, track the symptoms, the evolution of those symptoms, and process this data with machine learning so that we can get insights before problems occur,” says Katabi.

CBC News

Principal Research Scientist Ana Jaklenec speaks with CBC host Bob McDonald about her work developing a mobile vaccine printer. The device “can be very important in certain scenarios when you’re trying to bring the ability to vaccinate in areas that might not have the right infrastructure to make vaccines or even to administer vaccines,” says Jaklenec, “so I think the portability is key here.” 

Boston 25 News

Researchers at MIT have developed a new nanoparticle sensor that can detect cancerous proteins through a simple urine test. “The researchers designed the tests to be done on a strip of paper, similar to the at-home COVID tests everyone became familiar with during the pandemic,” writes Lambert. “They hope to make it as affordable and accessible to as many patients as possible.”

GBH

Prof. John Gabrieli speaks with GBH host Jeremy Siegel about his research showing that standard autism diagnostic tests often prevent women and girls from receiving proper diagnosis and proper treatment. “It’s only in recent years that we've understood that autism can be expressed quite differently in females,” says Gabrieli. “And we need to know that so they get the right kind of help.”

AFP

Researchers at MIT have developed a mobile printer that could create microneedle patches for mRNA vaccine delivery. “These "microneedle patches" offer a range of advantages over traditional jabs in the arm, including that they can be self-administered, are relatively painless, could be more palatable to the vaccine-hesitant and can be stored at room temperature for long periods of time,” writes Daniel Lawler for Agence France-Presse.

Genetic Engineering & Biotechnology News

Research scientist Ana Jaklenec spoke with Jonathan Grinstein at Genetic Engineering & Biotechnology News about a new microneedle patch printer she and her colleagues have developed that may one day enable on-demand vaccine manufacturing. “The idea was that you could, in an emergency situation, deploy some of these printers and locally vaccinate the population to prevent the global spread of infection,” says Jaklenec.

New York Post

In a new study, researchers at MIT showed that they “were able to interfere with an enzyme typically found to be overactive in the brains of Alzheimer’s patients,” reports Alex Mitchell for The New York Post. After using a peptide to treat the overactive enzyme, they found that “the peptide shows protective effects against loss of neurons and also appears to be able to rescue some of the behavior deficits,” says Prof. Li-Huei Tsai.

CNN

Callie Gade and Nate Bonham of CNN’s Discovery Daily Podcast spotlight how researchers from MIT developed a 3D printed replica of the human heart that can help doctors customize treatments for patients before conducting open heart surgery or other intrusive procedures. “These more patient-specific heart replicas can help future researchers develop and identify treatments for people with unique health problems,” says Gade.