Skip to content ↓

Topic

National Institutes of Health (NIH)

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 277 news clips related to this topic.
Show:

Newsweek

Researchers at MIT have developed a new HIV vaccine that could offer “strong protection with just one injection,” reports Ian Randall for Newsweek. “The vaccine includes two ‘adjuvants’—materials that help stimulate the immune system response,” explains Randall. “In the experiments, the dual-adjuvant vaccine was found to produce a wider diversity of antibodies to protect against an HIV protein than with either single adjuvant or none at all.” 

The Boston Globe

Researchers from MIT and other institutions have uncovered new pathways, along with identifying genes, that may contribute to the development of a new class of drugs to treat Alzheimer’s disease, reports John R. Ellement for The Boston Globe. “The drugs currently approved to treat Alzheimer’s have not been as successful as hoped,” Ellement explains. “Those drugs tend to target amyloid plaques in the brain, but the new research suggests other areas to target.” 

Genetic Engineering & Biotechnology News

Researchers from MIT and Harvard Medical School produced two new papers about the impact of a specific cytokine, or immune molecule, known as IL-17, on the brain when you’re sick. “Cytokines are well-known players in the immune response, helping to control inflammation and coordinate the responses of other immune cells,” reports Genetic Engineering & Biotechnology News. “A growing body of evidence suggests that some cytokines also influence the brain, leading to behavioral changes during illness.”

Le Figaro

A team of researchers from MIT and Harvard Medical School are “deciphering the action of small immune system proteins in the brain and showing how, by exciting or inhibiting populations of neurons, they modulate anxiety and social behaviors,” writes Soline Roy of Le Figaro.  

STAT

Researchers from MIT have “identified genes that the tuberculous bacteria rely on to survive and spread,” reports Allison DeAngelis for STAT. “Until now, very little was known about how tuberculous bacteria survived temperature changes, oxygen levels, humidity, and other environmental factors during the journey from one person’s lungs to another’s,” explains DeAngelis. 

The Boston Globe

Writing for The Boston Globe, Prof. Pierre Azoulay and Prof. Jeffrey Flier of Harvard Medical School make the case that any reforms at the NIH “should be grounded in evidence rather than tradition, avoiding the influence of special interests or political considerations.” They add that this approach “is an acknowledgement of NIH’s accomplishments and a charge to adapt it to the new realities of 21st-century science. The overarching goal must be to secure and enhance the decades-long role of the United States at the forefront of biomedical research, an outcome that the public both wants and deserves.”

Forbes

Researchers from MIT and elsewhere have developed a new vaccine that “could be potentially used against a broad array of coronaviruses like the one that causes Covid-19 and potentially forestall future pandemics,” reports Alex Knapp for Forbes. “The vaccine involves attaching tiny pieces of virus that remain unchanged across related strains to a nanoparticle,” explains Knapp.

NPR

Prof. Li-Huei Tsai, director of the Picower Institute, speaks with NPR host Jon Hamilton about her work identifying a protein called reelin that appears to protect brain cells from Alzheimer's. “Tsai says she and her team are now using artificial intelligence to help find a drug that can replicate what reelin does naturally,” says Hamilton. 

Gizmodo

MIT scientists have discovered how propofol, a commonly used anesthetic, induces unconsciousness, reports Adam Kovac for Gizmodo. “The new research indicates that [propofol] works by interfering with a brain’s ‘dynamic stability’ – a state where neurons can respond to input, but the brain is able to keep them from getting too excited,” explains Kovac. 

STAT

Prof. Bob Langer and Prof. Giovanni Traverso have co-founded Syntis Bio, a biotech company that will use technology to “coat the stomach and potentially other organ surfaces, [change] the way that drugs are absorbed or, in the case of obesity, which hormones are triggered,” reports Allison DeAngelis for STAT

Newsweek

MIT have developed a new ingestible vibrating capsule that could potentially be used to aid weight loss, writes Newsweek’s Robyn White. Prof. Giovanni Traverso said the capsule “could facilitate a paradigm shift in potential therapeutic options for obesity and other diseases affected by late stomach fullness.”

Interesting Engineering

MIT engineers have developed a new adhesive, low-cost hydrogel that can stop fibrosis often experienced by people with pacemakers and other medical devices, reports for Maria Bolevich Interesting Engineering. “These findings may offer a promising strategy for long-term anti-fibrotic implant–tissue interfaces,” explains Prof. Xuanhe Zhao. 

ShareAmerica

ShareAmerica reporter Lauren Monsen spotlights Prof. Dina Katabi for her work in advancing medicine with artificial intelligence. “Katabi develops AI tools to monitor patients’ breathing patterns, hear rate, sleep quality, and movements,” writes Monsen. “This data informs treatment for patients with diseases such as Parkinson’s, Alzheimer’s, Crohn’s, and ALS (amyotrophic lateral sclerosis), as well as Rett syndrome, a rare neurological disorder.”

Politico

Researchers at MIT and elsewhere have developed a machine-learning model that can identify which drugs should not be taken together, reports Politico. “The researchers built a model to measure how intestinal tissue absorbed certain commonly used drugs,” they write. “They then trained a machine-learning algorithm based on their new data and existing drug databases, teaching the new algorithm to predict which drugs would interact with which transporter proteins.”

AuntMinnie.com

Prof. Xuanhe Zhao speaks with Amerigo Allegretto of AuntMinnie.com about his work developing a new ultrasound sticker that can measure the stiffness of internal organs and could one day be used for early detection and diagnosis of disease. “Due to the huge potential of measuring the rigidity of deep internal organs, we believe we can use this to monitor organ health,” Zhao explains.