Skip to content ↓

Topic

Neuroscience

Download RSS feed: News Articles / In the Media / Audio

Displaying 151 - 165 of 269 news clips related to this topic.
Show:

U.S. News & World Report Generic Logo

Susan Hockfield, president emerita of MIT, has been named to U.S. News & World Report’s 2017 STEM Leadership Hall of Fame. The Hall of Fame honors leaders, “who have achieved measurable results in the science, technology, engineering and math fields; challenged established processes and conventional wisdom; inspired a shared vision; and motivated aspiring STEM professionals.”

Radio Boston (WBUR)

Prof. Emery Brown is a guest on WBUR’s Radio Boston to discuss the feasibility of merging computers with the human brain in an attempt to keep up with artificial intelligence. “Putting the emphasis on using the computational power to understand the physiology and neurocircuitry of the brain is where the success is going to come,” suggests Brown.

Scientific American

Simon Makin of Scientific American writes that MIT researchers have discovered the brain uses a complimentary memory system that simultaneously creates and stores both long and short-term memories. “There is a division of labor. The hippocampus can form active memories very quickly, while the cortex takes care of long-term stability,” explains Prof. Susumu Tonegawa.

PBS NOVA

A study by MIT researcher suggests that the brain simultaneously creates long and short-term memories, reports Tim De Chant for NOVA. The findings suggest that one version “is filed away in the hippocampus, the center of short-term memories, while the other is stored in cortex, where our long-term memories reside.”

BBC News

BBC News reporter James Gallagher writes that MIT researchers have found that the brain may simultaneously create short-term and long-term versions of memories. Prof. Susumu Tonegawa explains that “understanding how this happens may be relevant in brain disease patients.”

Boston Globe

A new study by MIT researchers suggests that, contrary to previous findings, the human brain may store short-term and long-term memories at the same time, reports Andy Rosen for The Boston Globe. Rosen writes that the findings could “lead toward a better understanding of memory diseases like Alzheimer’s.”

CNBC

Meg Tirrell of CNBC spotlights research by Prof. Li-Huei Tsai that shows that flashing lights could be used as a non-invasive treatment method for Alzheimer’s disease. Tsai and her colleagues found that flashing light could potentially be used to restore gamma rhythms in the brain, which are often impaired in people with Alzheimer’s. 

Wired

Wired reporter Nicola Davison spotlights the work of graduate student Dheeraj Roy, whose research is focused on developing new techniques to help Alzheimer’s patients remember lost memories. Davison writes that Roy’s findings offer a potential “strategy for improving memory that could go beyond the modest benefit of available drugs.”

WGBH

Postdoc Matthew Peterson speaks with WGBH reporter Edgar Herwick about why humans make eye contact. Peterson explains that humans are not good at judging where they are looking when talking to others, adding that the information we use is “highly concentrated in the eye region. So even if we're not looking at the eyes directly, we're using the eyes."

BBC

Prof. Daniela Rus speaks to the BBC’s Gareth Mitchell about the robots developed by CSAIL that can modify their behavior based on brain waves detected by a human operator. “We imagine operating prosthetic devices, a wheelchair, even autonomous vehicles,” says Prof. Rus.

Wired

CSAIL researchers have developed a system that allows robots to correct their mistakes based on input from the brainwaves of human operators, reports Wired’s Matt Simon. “It’s a new way of controlling the robot,” explains Prof. Daniela Rus, “in the sense that we aim to have the robot adapt to what the human would like to do.”

Newsweek

Anthony Cuthbertson of Newsweek writes that CSAIL researchers have developed a system that allows robots to change their actions based on feedback from the brain waves of a human operator. “Imagine robots or smartphones that could immediately correct themselves when you realize they’re making a mistake,” says PhD candidate Joseph DelPreto. 

HuffPost

CSAIL researchers have developed a system that allows robots to detect brain signals generated by human operators, writes Oscar Williams of Huffington Post. The researchers hope the new system could “pave the way for more seamless interactions between robots and humans.”

Forbes

A feedback system developed by CSAIL researchers allows humans to correct a robot’s mistakes using brain signals, writes Janet Burns for Forbes. The system could be used as a “communication method for those who can't use verbal means, such as immobilized or even 'locked in' victims of paralysis,” explains Burns. 

Financial Times

MIT researchers have developed a device that allows humans to guide robots using brainwaves, reports Clive Cookson for the Financial Times. The prototype brain-computer interface “enables a human observer to transmit an immediate error message to a robot, telling it to fix a mistake when it does something wrong.”